Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated.
View Article and Find Full Text PDFNeuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein.
View Article and Find Full Text PDFContaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish.
View Article and Find Full Text PDFPlant defensins are a large family of small cationic proteins with diverse functions and mechanisms of action, most of which assert antifungal activity against a broad spectrum of fungi. The partial mechanism of action has been resolved for a small number of members of plant defensins, and studies have revealed that many act by more than one mechanism. The plant defensin Ppdef1 has a unique sequence and long loop 5 with fungicidal activity against a range of human fungal pathogens, but little is known about its mechanism of action.
View Article and Find Full Text PDF() is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens.
View Article and Find Full Text PDFis the most important gastrointestinal parasite in the livestock industry in temperate regions around the world, causing great economic losses. The infective third-stage larvae (L3) of secrete a large number of excretory-secretory (E/S) molecules, some of which are likely to play critical roles in modulating the host immune response. One of the most abundant E/S molecules is a protein termed Tci-gal-1, which has similarity to mammalian galectins.
View Article and Find Full Text PDFPlant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family.
View Article and Find Full Text PDFExtracellular vesicles (EVs) represent a system for the coordinated secretion of a variety of molecular cargo including proteins, lipids, nucleic acids, and metabolites. They have an essential role in intercellular communication in multicellular organisms and have more recently been implicated in host-pathogen interactions. Study of the role for EVs in fungal biology has focused on pathogenic yeasts that are major pathogens in humans.
View Article and Find Full Text PDFPlant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns.
View Article and Find Full Text PDFThe fungal cell wall is the first point of contact between fungal pathogens and host organisms. It serves as a protective barrier against biotic and abiotic stresses and as a signal to the host that a fungal pathogen is present. The fungal cell wall is made predominantly of carbohydrates and glycoproteins, many of which serve as binding receptors for host defence molecules or activate host immune responses through interactions with membrane-bound receptors.
View Article and Find Full Text PDFOver the last few decades, the emergence of resistance to commonly used antifungal molecules has become a major barrier to effective treatment of recurrent life-threatening fungal diseases. Resistance combined with the increased incidence of fungal diseases has created the need for new antifungals, such as the plant defensin NaD1, with different mechanisms of action to broaden treatment options. Antimicrobial peptides produced in plants and animals are promising new molecules in the arsenal of antifungal agents because they have different mechanisms of action to current antifungals and are often targeted specifically to fungal pathogens (van der Weerden et al.
View Article and Find Full Text PDFTranscriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst noncoding RNAs perform additional diverse functions.
View Article and Find Full Text PDFThe plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall.
View Article and Find Full Text PDFThe propensity of a fungal pathogen to evolve virulence depends on features of its biology (e.g. mode of reproduction) and of its genome (e.
View Article and Find Full Text PDFBackground: Banks of mutants with random insertions of T-DNA from are often used in forward genetics approaches to identify phenotypes of interest. Upon identification of mutants of interest, the flanking sequences of the inserted T-DNA must be identified so that the mutated gene can be characterised. However, for many fungi, this task is not trivial as widely used PCR-based methods such as thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) are not successful.
View Article and Find Full Text PDFLeptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus), causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers.
View Article and Find Full Text PDFThe fungus Leptosphaeria maculans causes blackleg of Brassica species. Here, we report the mapping and subsequent cloning of an avirulence gene from L. maculans.
View Article and Find Full Text PDFIn recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins.
View Article and Find Full Text PDFMany ascomycete Fusarium spp. are plant pathogens that cause disease on both cereal and noncereal hosts. Infection of wheat ears by Fusarium graminearum and F.
View Article and Find Full Text PDFStagonospora nodorum is a necrotrophic fungal pathogen that is the causal agent of leaf and glume blotch on wheat. S. nodorum is a polycyclic pathogen, whereby rain-splashed pycnidiospores attach to and colonise wheat tissue and subsequently sporulate again within 2-3weeks.
View Article and Find Full Text PDFA non-targeted metabolomics approach was used to identify significant changes in metabolism upon exposure of the wheat pathogen Stagonospora nodorum to 0.5M NaCl. The polyol arabitol, and to a lesser extent glycerol, was found to accumulate in response to the osmotic stress treatment.
View Article and Find Full Text PDFStagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds.
View Article and Find Full Text PDFThe physiological role of the mannitol cycle in the wheat pathogen Stagonospora nodorum (glume blotch) has been investigated by reverse genetics and metabolite profiling. A putative mannitol 2-dehydrogenase gene (Mdh1) was cloned by degenerate PCR and disrupted. The resulting mutated mdh1 strains lacked all detectable NADPH-dependent mannitol dehydrogenase activity.
View Article and Find Full Text PDF