Publications by authors named "Rohan E J Beckwith"

Article Synopsis
  • - Sickle cell disease (SCD) is a serious inherited condition caused by a mutation in the β-hemoglobin gene, and increasing fetal hemoglobin (HbF) levels can help reduce complications.
  • - Researchers discovered two small molecules, dWIZ-1 and dWIZ-2, that act as molecular glue degraders to induce HbF by targeting a previously unrecognized repressor, the WIZ transcription factor.
  • - These compounds effectively triggered HbF production in animal models, suggesting that targeting WIZ for degradation offers a promising and accessible new treatment approach for SCD.
View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on designing molecular glues (MGs) that bind to cereblon (CRBN) and selectively recruit desired proteins while avoiding the degradation of SALL4, which is teratogenic.
  • Previous findings indicate that SALL4 is degraded by IKZF1 degraders like pomalidomide and CC-220, but the interaction between SALL4 and CRBN is complex.
  • Biophysical studies show that specific zinc finger domains (ZF1 and ZF2) of SALL4 interact with different parts of cereblon, affecting the stability and potency of these interactions, and could lead to better therapeutic designs that minimize unwanted effects on SALL4.
View Article and Find Full Text PDF
Article Synopsis
  • Malignant tumors can avoid the immune system's attacks by luring in regulatory T cells (Treg), and the IKZF2 (Helios) transcription factor is essential for Treg cell stability and function.
  • The study introduces NVP-DKY709, a new drug that specifically targets and degrades IKZF2 while leaving other related factors (IKZF1/3) intact, enhancing the immune response against tumors.
  • In tests, NVP-DKY709 not only improved the activity of T-effector cells and reduced tumor growth in mice but is also being explored for its potential as a cancer treatment in clinical trials.
View Article and Find Full Text PDF

Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery.

View Article and Find Full Text PDF

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines.

View Article and Find Full Text PDF

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage.

View Article and Find Full Text PDF

Alkaloids constitute a large family of natural products possessing diverse biological properties. Their unique and complex structures have inspired numerous innovations in synthetic chemistry. In the realm of late-stage C-H functionalization, alkaloids remain a significant challenge due to the presence of the basic amine and a variety of other functional groups.

View Article and Find Full Text PDF

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN).

View Article and Find Full Text PDF

Typically, screening collections of pharmaceutical companies contain more than a million compounds today. However, for certain high-throughput screening (HTS) campaigns, constraints posed by the assay throughput and/or the reagent costs make it impractical to screen the entire deck. Therefore, it is desirable to effectively screen subsets of the collection based on a hypothesis or a diversity selection.

View Article and Find Full Text PDF

Tetrakis(N-[4-dodecylbenzenesulfonyl]-(L)-prolinate) dirhodium [Rh(2)(S-DOSP)(4)]-catalyzed decomposition of vinyldiazoacetates in the presence of allyl silyl ethers results in the formation of the direct C-H insertion product and the product derived from a combined C-H activation/siloxy-Cope rearrangement. Both products are formed with very high diastereoselectivity (>94% de) and high enantioselectvity (78-93% ee). Under thermal or microwave conditions, the direct C-H insertion product undergoes a siloxy-Cope rearrangement in a stereoselective manner.

View Article and Find Full Text PDF

The C-H activation of silyl ethers by means of rhodium carbenoid-induced C-H insertion represents a very direct method for the stereoselective synthesis of silyl-protected beta-hydroxy esters. The reaction can proceed with very high regio-, diastereo-, and enantioselectivity and represents a surrogate to the aldol reaction. The reaction is catalyzed by the rhodium prolinate complex Rh(2)(S-DOSP)(4).

View Article and Find Full Text PDF