Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns.
View Article and Find Full Text PDFPlasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2024
Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.
View Article and Find Full Text PDFAs the primary greenhouse gas, CO emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO in the atmosphere is imperative to keep the global average temperature rise below 2 °C.
View Article and Find Full Text PDFOver the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries.
View Article and Find Full Text PDFStarch and its derivatives have recently emerged as a sustainable and renewable alternative for petroleum-based expanded polystyrene (EPS) and expanded polypropylene (EPP) foam materials. In this study, biodegradable foam materials were prepared from cassava starch using a novel dual modification technique, combining microwave treatment and freeze-drying. The foam materials were prepared from starch solutions microwaved over different intervals.
View Article and Find Full Text PDFStarch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity.
View Article and Find Full Text PDFSynthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated.
View Article and Find Full Text PDFTwo series of alumina (Al₂O₃)⁻mesoporous organosilica (Al⁻MO) hybrid materials were synthesized using the co-condensation method in the presence of Pluronic 123 triblock copolymer. The first series of Al⁻MO samples was prepared using aluminum nitrate nanahydrate (Al⁻NN) and aluminum isopropoxide (Al⁻IP) as alumina precursors, and organosilanes with three different bridging groups, namely tris[3-(trimethoxysilyl)propyl]isocyanurate, 1,4-bis(triethoxysilyl)benzene, and bis(triethoxysilyl)ethane. The second series was obtained using the aforementioned precursors in the presence of an amine-containing 3-aminopropyltriethoxysilane to introduce, also, hanging groups.
View Article and Find Full Text PDFIn Fourier transform infrared (FTIR) microspectrocopy, the tissue preparation method is crucial, especially how the tissue is cryo-sectioned prior to the imaging requires special consideration. Having a temperature difference between the cutting blade and the specimen holder of the cryostat greatly affects the quality of the sections. Therefore, we have developed an optimal protocol for cryo-sectioning of biological tissues by varying the temperature of both the cutting blade and the specimen holder.
View Article and Find Full Text PDFInt J Biol Macromol
December 2016
Manganese dioxide (MnO)-chitin-hybrid material was prepared by a facile "one-pot" synthesis method. MnO-chitin hybrid was used for the effective removal of methylene blue (MB) from liquid solution as model for wastewater treatment. The hybrid obtained was characterized by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis.
View Article and Find Full Text PDFKinetic and mechanistic studies on the reaction of a major intracellular vitamin B form, cob(II)alamin (Cbl(II)), with hypochlorous acid/hypochlorite (HOCl/OCl) have been carried out. Cbl(II) (Co(II)) is rapidly oxidized by HOCl to predominately aquacobalamin/hydroxycobalamin (Cbl(III), Co(III)) with a second-order rate constant of 2.4×10Ms (25.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2016
Directly obtaining kinetic and mechanistic data for the reactions of nitroxyl (HNO) with biomolecules (k≈10 -10 m s ) is not feasible for many systems because of slow HNO release from HNO donor molecules (t is typically minutes to hours). To address this limitation, we have developed a photoactivatable HNO donor incorporating the (3-hydroxy-2-naphthalenyl)methyl phototrigger, which rapidly releases HNO on demand. A "proof of concept" study is reported, which demonstrates that, upon continuous xenon light excitation, rapid decomposition of the HNO donor occurs within seconds.
View Article and Find Full Text PDFUnlabelled: Mitochondrial changes, including decreased expression of electron transport chain subunit genes and impaired energetic, have been reported in multiple sclerosis (MS), but the mechanisms involved in these changes are not clear. To determine whether epigenetic mechanisms are involved, we measured the concentrations of methionine metabolites by liquid chromatography tandem mass spectrometry, histone H3 methylation patterns, and markers of mitochondrial respiration in gray matter from postmortem MS and control cortical samples. We found decreases in respiratory markers as well as decreased concentrations of the methionine metabolites S-adenosylmethionine, betaine, and cystathionine in MS gray matter.
View Article and Find Full Text PDFThe reactions of the carbonate radical anion (CO3 (.) (-) ) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.
View Article and Find Full Text PDFAlthough now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there are few studies on the reactivity of NO2, including the reactions between NO2 and transition metal complexes. We report kinetic studies on the reactions of NO2 with two forms of vitamin B12 - cob(II)alamin and nitrocobalamin. UV-visible spectroscopy and HPLC analysis of the product solution show that NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.
View Article and Find Full Text PDFThe essential but also toxic gaseous signaling molecule nitric oxide is scavenged by the reduced vitamin B complex cob(II)alamin. The resulting complex, nitroxylcobalamin (NO-Cbl(III)), is rapidly oxidized to nitrocobalamin (NOCbl) in the presence of oxygen; however it is unlikely that nitrocobalamin is itself stable in biological systems. Kinetic studies on the reaction between NOCbl and the important intracellular antioxidant, glutathione (GSH), are reported.
View Article and Find Full Text PDFO₂.- scavenger: The rate constant for the rapid reaction of the ROS superoxide with the reduced vitamin B₁₂ radical complex cob(II)alamin was directly determined to be 3.8×10(8) M⁻¹ s⁻¹.
View Article and Find Full Text PDF