SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution.
View Article and Find Full Text PDFAlterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors.
View Article and Find Full Text PDFGenes (Basel)
September 2023
Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested.
View Article and Find Full Text PDFBackground: Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002-2003) is encoded by the open reading frame 8 (ORF8). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8.
View Article and Find Full Text PDFThe analysis of deletions may reveal evolutionary trends and provide new insight into the surprising variability and rapidly spreading capability that SARS-CoV-2 has shown since its emergence. To understand the factors governing genomic stability, it is important to define the molecular mechanisms of deletions in the viral genome. In this work, we performed a statistical analysis of deletions.
View Article and Find Full Text PDFNucleotide substitutions in protein-coding genes can be divided into synonymous (S) and non-synonymous (N) ones that alter amino acids (including nonsense mutations causing stop codons). The S substitutions are expected to have little effect on function. The N substitutions almost always are affected by strong purifying selection that eliminates them from evolving populations.
View Article and Find Full Text PDFLeishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus . Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two spp. with their respective viral species (, LRV1 and L.
View Article and Find Full Text PDFThe appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.
View Article and Find Full Text PDFMutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways.
View Article and Find Full Text PDFThe AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2.
View Article and Find Full Text PDFThe SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681-684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome.
View Article and Find Full Text PDFCancer genomes harbor numerous genomic alterations and many cancers accumulate thousands of nucleotide sequence variations. A prominent fraction of these mutations arises as a consequence of the off-target activity of DNA/RNA editing cytosine deaminases followed by the replication/repair of edited sites by DNA polymerases (pol), as deduced from the analysis of the DNA sequence context of mutations in different tumor tissues. We have used the weight matrix (sequence profile) approach to analyze mutagenesis due to Activation Induced Deaminase (AID) and two error-prone DNA polymerases.
View Article and Find Full Text PDFThe appearance of multiple new SARS-CoV-2 variants during the winter of 2020-2021 is a matter of grave concern. Some of these new variants, such as B.1.
View Article and Find Full Text PDFCurrent eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability.
View Article and Find Full Text PDFNonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread.
View Article and Find Full Text PDFThe species complex consists of all and strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in spp. occur very often, thus enabling parasites to adapt to the different environmental conditions.
View Article and Find Full Text PDFAbundant in nature, carotenoids are a class of fat-soluble pigments with a polyene tetraterpenoid structure. They possess antioxidant properties and their consumption leads to certain health benefits in humans. Carotenoid cleavage oxygenases (CCOs) are a superfamily of enzymes which oxidatively cleave carotenoids and they are present in all kingdoms of life.
View Article and Find Full Text PDFBackground: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
November 2020
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life.
View Article and Find Full Text PDFBackground: Single nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases potentially could alleviate the deleterious effect of single substitutions, making them subject to positive selection.
View Article and Find Full Text PDFThe 3'-most genes in RNA-2 of the Crinivirus genus members (family Closteroviridae) code for non-structural p26 proteins that share amino acid sequence similarity [Stewart LR, Hwang MS, Falk BW (2009) Virus Res 145:293-299]. In this study, sensitive bioinformatic tools have been used to identify the homologous p26 proteins encoded by the 3' genes in monopartite genomes of the members of Velarivirus, another Closteroviridae genus, and mint vein banding-associated virus, an unassigned member of the family. The p26 proteins showed similarity in their predicted secondary structures, but an amino acid sequence alignment showed no strictly conserved positions, thus indicating a high plasticity of these non-structural proteins.
View Article and Find Full Text PDFA recent article in described the striking discovery that the commensal strain MO34 displays antimicrobial and antitumor activities by producing a small molecule, identified as the nucleobase analog 6--hydroxylaminopurine (6-HAP). However, in contradiction to the literature, the authors claimed that 6-HAP is nonmutagenic and proposed that the toxic effect of 6-HAP results from its ability to inhibit, in its base form, DNA synthesis. To resolve the discrepancy, we proved by genetic experiments with bacteria and yeast that extracts of MO34 do contain a mutagenic compound whose effects are identical to chemically synthesized 6-HAP.
View Article and Find Full Text PDF