Networks are increasingly used in various fields to represent systems with the aim of understanding the underlying rules governing observed interactions, and hence predict how the system is likely to behave in the future. Recent developments in network science highlight that accounting for node metadata improves both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, to predict interactions in a network within existing statistical and machine learning frameworks, we need to learn objects that rapidly grow in dimension with the number of nodes.
View Article and Find Full Text PDFBiological interactions are key drivers of ecological and evolutionary processes. The complexity of such interactions hinders our understanding of ecological systems and our ability to make effective predictions in changing environments. However, network analysis allows us to better tackle the complexity of ecosystems because it extracts the properties of an ecological system according to the number and distribution of links among interacting entities.
View Article and Find Full Text PDF