Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues.
View Article and Find Full Text PDFCRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements.
View Article and Find Full Text PDFThe enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly.
View Article and Find Full Text PDFThe zoonotic human pathogen is known for its ability to induce DNA-damage and cell death pathology in humans. The molecular mechanism behind this phenomenon involves nuclear translocation by Cas9, a nuclease in . (CjeCas9) that is the molecular marker of the Type II CRISPR-Cas system.
View Article and Find Full Text PDFCRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death.
View Article and Find Full Text PDFNonulosonic acids, commonly referred to as sialic acids, are a highly important group of nine-carbon sugars common to all domains of life. They all share biosynthetic and structural features, but otherwise display a remarkable chemical diversity. In humans, sialic acids cover all cells which makes them important for processes such as cellular protection, immunity and brain development.
View Article and Find Full Text PDFEur J Microbiol Immunol (Bp)
September 2015
Raw milk is a recognized source of Campylobacter outbreaks, but pasteurization is an effective way to eliminate the causative agent of Campylobacteriosis. Whereas breastfeeding is protective against infectious diseases, consumption of formula milk is thought to be not. However, in relation to Campylobacter, such data is currently unavailable.
View Article and Find Full Text PDFCRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches.
View Article and Find Full Text PDFHuman respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease.
View Article and Find Full Text PDFClustered, regularly interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
March 2014
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system.
View Article and Find Full Text PDFBiochem Soc Trans
December 2013
The continuous battle for survival in the environment has led to the development or acquisition of sophisticated defence systems in bacteria. These defence systems have contributed to the survival of the bacterial species in the environment for millions of years. Some systems appear to have evolved in a number of pathogenic bacteria towards a role in virulence and host immune evasion.
View Article and Find Full Text PDFTranslocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited.
View Article and Find Full Text PDFSignificant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40).
View Article and Find Full Text PDFCampylobacter jejuni is a frequent cause of bacterial gastroenteritis worldwide. Lipooligosaccharide (LOS) has been identified as an important virulence factor that may play a role in microbial adhesion and invasion. Here we specifically address the question of whether LOS sialylation affects the interaction of C.
View Article and Find Full Text PDFTreatment of congenital and acquired liver disease is one of the main issues in the field of gene therapy. Self-inactivating lentiviral vectors have several potential advantages over alternative systems. We have constructed a self-inactivating lentiviral vector (LV-ALBUGT) that expresses the human bilirubin UDP-glucuronosyltransferase (UGT1A1) from a liver-specific promoter.
View Article and Find Full Text PDF