Background: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2).
Methods And Results: The physicochemical characteristics of the synthesized nanocomposites (SiO@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques.
Overproduction of reactive oxygen species (ROS) in infected wounds induces a tremendous inflammatory reaction to delay wound healing. To address this problem, we designed a multifunctional polyacrylamide/PVA-based hydrogel containing synthesized poly(1-glycidyl-3-butylimidazolium salicylate) (polyGBImSal) and fabricated polydopamine-coated polyphenolic nanosheet (PDA@PNS) for wound dressing. The PDA@PNS particles were designed to induce I) antioxidant and anti-inflammatory features through ROS-scavenging and II) cell adhesive properties by the existing polydopamine into the hydrogels.
View Article and Find Full Text PDFIn the present study, we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells. Myc decoy ODNs were designed based on the promoter of gene and analyzed by molecular docking and molecular dynamics assays. ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure.
View Article and Find Full Text PDFAccid Anal Prev
November 2016
The aim of this study was to specify the causes of occupational accidents, determine social responsibility and the role of groups involved in work-related accidents. This study develops occupational accidents causes tree, occupational accidents responsibility tree, and occupational accidents component-responsibility analysis worksheet; based on these methods, it develops cause-responsibility analysis (CRA) techniques, and for testing them, analyzes 100 fatal/disabling occupational accidents in the construction setting that were randomly selected from all the work-related accidents in Tehran, Iran, over a 5-year period (2010-2014). The main result of this study involves two techniques for CRA: occupational accidents tree analysis (OATA) and occupational accidents components analysis (OACA), used in parallel for determination of responsible groups and responsibilities rate.
View Article and Find Full Text PDF