Publications by authors named "Rogger Palacios-Rivera"

Understanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase.

View Article and Find Full Text PDF

The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation.

View Article and Find Full Text PDF

We provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of CF depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C.

View Article and Find Full Text PDF

Direct sublimation of a Cu4Cl4 metal-organic cluster on Cu(110) under ultra-high vacuum allows the formation of ultra-large well-organized metal-organic supramolecular wires. Our results show that the large monomers assemble with each other by π-π interactions connecting dipyrimidine units and are stabilized by the surface.

View Article and Find Full Text PDF