Publications by authors named "Rogers Silva"

Different brain imaging methods provide valuable insights, and their combination enhances understanding of the brain. Existing fusion approaches typically use precomputed functional magnetic resonance imaging (fMRI) features, such as amplitude of low frequency fluctuations, regional homogeneity, or functional network connectivity while linking fMRI and structural MRI (sMRI). The fusion step typically ignores the detailed temporal information available in the complete 4D fMRI.

View Article and Find Full Text PDF

With the increasing availability of large-scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross-modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross-modal sources in multiple datasets. In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful linked features across three neuroimaging modalities-structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI-in two large independent datasets, one comprising of control subjects and the other including patients with schizophrenia.

View Article and Find Full Text PDF

Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification.

View Article and Find Full Text PDF

Functional and structural magnetic resonance imaging (fMRI and sMRI) are complementary approaches that can be used to study longitudinal brain changes in adolescents. Each individual modality offers distinct insights into the brain. Each individual modality may overlook crucial aspects of brain analysis.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) are two widely used techniques to analyze longitudinal brain functional and structural change in adolescents. Although longitudinal changes in intrinsic functional and structural changes have been studied separately, most studies focus on univariate change rather than estimating multivariate patterns of functional network connectivity (FNC) and gray matter (GM) changes with increased age. To analyze whole-brain structural and functional changes with increased age, we suggest two complementary techniques (1: linking of functional change pattern (FCP) to voxel-wise ∆GM and 2: the connection between FCP and structural change pattern (SCP)).

View Article and Find Full Text PDF

The examination of multivariate brain morphometry patterns has gained attention in recent years, especially for their powerful exploratory capabilities in the study of differences between patients and controls. Among the many existing methods and tools for the analysis of brain anatomy based on structural magnetic resonance imaging data, data-driven source-based morphometry (SBM) focuses on the exploratory detection of such patterns. Here, we implement a semi-blind extension of SBM, called constrained source-based morphometry (constrained SBM), which enables the extraction of maximally independent reference-alike sources using the constrained independent component analysis (ICA) approach.

View Article and Find Full Text PDF

A key challenge in neuroscience is to understand the structural and functional relationships of the brain from high-dimensional, multimodal neuroimaging data. While conventional multivariate approaches often simplify statistical assumptions and estimate one-dimensional independent sources shared across modalities, the relationships between true latent sources are likely more complex - statistical dependence may exist within and between modalities, and span one or more dimensions. Here we present Multimodal Subspace Independent Vector Analysis (MSIVA), a methodology to capture both joint and unique vector sources from multiple data modalities by defining both cross-modal and unimodal subspaces with variable dimensions.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, with onset in childhood and a considerable likelihood to persist into adulthood. Our previous work has identified that across adults and adolescents with ADHD, gray matter volume (GMV) alteration in the frontal cortex was consistently associated with working memory underperformance, and GMV alteration in the cerebellum was associated with inattention. Recent knowledge regarding ADHD genetic risk loci makes it feasible to investigate genomic factors underlying these persistent GMV alterations, potentially illuminating the pathology of ADHD persistence.

View Article and Find Full Text PDF

Individuals can be characterized in a population according to their brain measurements and activity, given the inter-subject variability in brain anatomy, structure-function relationships, or life experience. Many neuroimaging studies have demonstrated the potential of functional network connectivity patterns estimated from resting functional magnetic resonance imaging (fMRI) to discriminate groups and predict information about individual subjects. However, the predictive signal present in the spatial heterogeneity of brain connectivity networks is yet to be extensively studied.

View Article and Find Full Text PDF

In this study, we introduce a method to perform independent vector analysis (IVA) fusion to estimate linked independent sources and apply to a large multimodal dataset of over 3000 subjects in the UK Biobank study, including structural (gray matter), diffusion (fractional anisotropy), and functional (amplitude of low frequency fluctuations) magnetic resonance imaging data from each subject. The approach reveals a number of linked sources showing significant and meaningful covariation with subject phenotypes. One such mode shows significant linear association with age across all three modalities.

View Article and Find Full Text PDF

Advances in imaging acquisition techniques allow multiple imaging modalities to be collected from the same subject. Each individual modality offers limited yet unique views of the functional, structural, or dynamic temporal features of the brain. Multimodal fusion provides effective ways to leverage these complementary perspectives from multiple modalities.

View Article and Find Full Text PDF

Background: Resting-state fMRI (rs-fMRI) is employed to assess "functional connections" of signal between brain regions. However, multiple rs-fMRI paradigms and data-filtering strategies have been used, highlighting the need to explore BOLD signal across the spectrum. Rs-fMRI data is typically filtered at frequencies ranging between 0.

View Article and Find Full Text PDF

Background: Dysfunctional reward processing is implicated in multiple mental disorders. Novelty seeking (NS) assesses preference for seeking novel experiences, which is linked to sensitivity to reward environmental cues.

Methods: A subset of 14-year-old adolescents (IMAGEN) with the top 20% ranked high-NS scores was used to identify high-NS-associated multimodal components by supervised fusion.

View Article and Find Full Text PDF

Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) approaches for brain imaging data analysis. However, their conclusions are often based on pre-engineered features depriving DL of its main advantage - representation learning. We conduct a large-scale systematic comparison profiled in multiple classification and regression tasks on structural MRI images and show the importance of representation learning for DL.

View Article and Find Full Text PDF

Blind source separation algorithms such as independent component analysis (ICA) are widely used in the analysis of neuroimaging data. To leverage larger sample sizes, different data holders/sites may wish to collaboratively learn feature representations. However, such datasets are often privacy-sensitive, precluding centralized analyses that pool the data at one site.

View Article and Find Full Text PDF

Unsupervised latent variable models-blind source separation (BSS) especially-enjoy a strong reputation for their interpretability. But they seldom combine the rich diversity of information available in multiple datasets, even though multidatasets yield insightful joint solutions otherwise unavailable in isolation. We present a direct, principled approach to multidataset combination that takes advantage of multidimensional subspace structures.

View Article and Find Full Text PDF
Article Synopsis
  • Multimodal data fusion is an emerging field focusing on methods to find coherent patterns across different types of data, with several techniques including joint independent component analysis (jICA) and multiset canonical correlation analysis (mCCA).
  • Current methods like jICA and mCCA have limitations such as requiring the same number of components for all modalities, while DS-ICA and parallel ICA can handle common and distinct features but are restricted to only two modalities.
  • The proposed aNy-way ICA model overcomes these challenges by efficiently maximizing source independence and correlations across any number of modalities, showing superior accuracy in source recovery and linkage patterns, especially in noisy scenarios.
View Article and Find Full Text PDF

As neuroimaging data increase in complexity and related analytical problems follow suite, more researchers are drawn to collaborative frameworks that leverage data sets from multiple data-collection sites to balance out the complexity with an increased sample size. Although centralized data-collection approaches have dominated the collaborative scene, a number of decentralized approaches-those that avoid gathering data at a shared central store-have grown in popularity. We expect the prevalence of decentralized approaches to continue as privacy risks and communication overhead become increasingly important for researchers.

View Article and Find Full Text PDF

Many brain imaging modalities reveal interpretable patterns after the data dimensionality is reduced and summarized via data-driven approaches. In functional magnetic resonance imaging (fMRI) studies, such summarization is often achieved through independent component analysis (ICA). ICA transforms the original data into a relatively small number of interpretable bases in voxel space (referred to as ICA spatial components, or spatial maps) and corresponding bases in the time domain (referred to as time-courses of corresponding spatial maps) In this work, we use the word "basis" to broadly refer to either of the two factors resulting from the transformation.

View Article and Find Full Text PDF

The human brain is asymmetrically lateralized for certain functions (such as language processing) to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used for its calculation.

View Article and Find Full Text PDF

Independent component analysis has been widely applied to brain imaging and genetic data analyses for its ability to identify interpretable latent sources. Nevertheless, leveraging source sparsity in a more granular way may further improve its ability to optimize the solution for certain data types. For this purpose, we propose a sparse infomax algorithm based on nonlinear Hoyer projection, leveraging both sparsity and statistical independence of latent sources.

View Article and Find Full Text PDF

There is growing evidence that rather than using a single brain imaging modality to study its association with physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging (fMRI) are restricted to second-level 3D features, rather than the original 4D fMRI data. This trade-off is that the valuable temporal information is not utilized during the fusion step.

View Article and Find Full Text PDF

The field of neuroimaging has recently witnessed a strong shift towards data sharing; however, current collaborative research projects may be unable to leverage institutional architectures that collect and store data in local, centralized data centers. Additionally, though research groups are willing to grant access for collaborations, they often wish to maintain control of their data locally. These concerns may stem from research culture as well as privacy and accountability concerns.

View Article and Find Full Text PDF

In the field of neuroimaging, there is a growing interest in developing collaborative frameworks that enable researchers to address challenging questions about the human brain by leveraging data across multiple sites all over the world. Additionally, efforts are also being directed at developing algorithms that enable collaborative analysis and feature learning from multiple sites without requiring the often large data to be centrally located. In this paper, we propose two new decentralized algorithms: (1) A decentralized regression algorithm for performing a voxel-based morphometry analysis on structural magnetic resonance imaging (MRI) data and, (2) A decentralized dynamic functional network connectivity algorithm which includes decentralized group ICA and sliding-window analysis of functional MRI data.

View Article and Find Full Text PDF

In the era of Big Data, sharing neuroimaging data across multiple sites has become increasingly important. However, researchers who want to engage in centralized, large-scale data sharing and analysis must often contend with problems such as high database cost, long data transfer time, extensive manual effort, and privacy issues for sensitive data. To remove these barriers to enable easier data sharing and analysis, we introduced a new, decentralized, privacy-enabled infrastructure model for brain imaging data called COINSTAC in 2016.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0ok332n8jj4ge334hl7ajbase8di2pid): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once