Publications by authors named "Rogerio de Sousa"

Elastomers based on block copolymers can self-organize into ordered nanoscale structures, making them attractive for use as flexible conductive nanocomposites. Understanding how ordered structures impact electrical properties is essential for practical applications. This study investigated the morphological evolution of flexible conductive elastomers based on polystyrene--poly(ethylene--butylene)--polystyrene (SEBS) block copolymers with aligned single- or multi-wall carbon nanotubes (SWCNTs or MWCNTs) and their electrical conductivity under large deformations.

View Article and Find Full Text PDF

We present a quantum theory of dielectric energy loss arising from the piezoelectric coupling between photons and phonons in superconducting devices. Photon loss is shown to occur predominantly at the interface, where the piezoelectric effect is nonzero even when the materials are perfectly crystalline (epitaxial) and free of two-level system defects. We present explicit numerical calculations for the value of the intrinsic loss tangent at several interfaces to conclude that the T_{1} of superconducting qubits may reach over 10^{4}  μs if the device is made with defect-free interfaces.

View Article and Find Full Text PDF

Objectives: This study was conducted to establish a method for early, quick and cheap screening of iron excess tolerance in rice (Oryza sativa L.) cultivars.

Results: Based on the experiments, iron excess leads to reduction in shoot length (SL) and this can be a useful characteristic for adequate screening of tolerant genotypes.

View Article and Find Full Text PDF

In this study the helminthiasis and anthelmintic effectiveness in ewes and lambs were evaluated in a semiarid region of Brazil. Twelve sheep farms were investigated using semi-structured questionnaires and fecal egg count (FEC) reduction test was employed to analyze the profile of anthelmintic resistance. Groups of at least 10 animals with FEC ≥ 300 were selected.

View Article and Find Full Text PDF

We present a microscopic theory that shows the importance of spin-orbit coupling in perovskite compounds with heavy ions. In BiFeO3 (BFO) the spin-orbit coupling at the bismuth ion sites results in a special kind of magnetic anisotropy that is linear in the applied E field. This interaction can convert the cycloid ground state into a homogeneous antiferromagnet, with a weak ferromagnetic moment whose orientation can be controlled by the E-field direction.

View Article and Find Full Text PDF

Iron is involved in many metabolic processes, such as respiration and photosynthesis, and therefore an essential element for plant development. Comparative analysis of gene copies between crops and lower plant groups can shed light on the evolution of genes important to iron homeostasis. A phylogenetic analysis of five metal homeostasis gene families (NAS, NRAMP, YSL, FRO, and IRT) selected in monocots, dicots, gymnosperms, and bryophytes was performed.

View Article and Find Full Text PDF

Nuclear spin qubits have the longest coherence times in the solid state, but their quantum readout and initialization is a great challenge. We present a theory for the interaction of an electric current with the nuclear spins of donor impurities in semiconductors. The theory yields a sensitivity criterion for quantum detection of nuclear spin states using electrically detected magnetic resonance, as well as an all-electrical method for fast nuclear spin qubit initialization.

View Article and Find Full Text PDF

Interest in understanding the interplay between noise and the response of a nonlinear device cuts across disciplinary boundaries. It is as relevant for unmasking the dynamics of neurons in noisy environments as it is for designing reliable nanoscale logic circuit elements and sensors. Most studies of noise in nonlinear devices are limited to either time-correlated noise with a Lorentzian spectrum (of which the white noise is a limiting case) or just white noise.

View Article and Find Full Text PDF

We show that single electron tunneling devices such as the Cooper-pair box or double quantum dot can be sensitive to the zero-point fluctuation of a single trapping center hybridized with a Fermi sea. If the trap energy level is close to the Fermi sea and has linewidth gamma > k(B)T, its noise spectrum has an Ohmic Johnson-Nyquist form, whereas for gamma < k(B)T the noise has a Lorentzian form expected from the semiclassical limit. Trap levels above the Fermi level are shown to lead to steps in the noise spectrum that can be used to probe their energetics, allowing the identification of individual trapping centers coupled to the device.

View Article and Find Full Text PDF