Materials (Basel)
January 2025
The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the CuMn11Al8Fe3Ni3. The alloy was directionally and upward solidified from a temperature of 1250 °C.
View Article and Find Full Text PDFAluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions.
View Article and Find Full Text PDF