Publications by authors named "Rogerio Santos de Oliveira Cruz"

Intermittent blood flow restriction to local or remote vascular beds induces endogenous protection against ischemia-reperfusion injury in several tissues and organs. When applied non-invasively by placing occlusion cuffs on the limbs, this ischemic conditioning has been shown to elicit an acute ergogenic response. However, the underlying mechanisms behind this phenomenon remain unknown.

View Article and Find Full Text PDF

Purpose: Although ischaemic preconditioning (IPC), induced by cycles of transient limb ischaemia and reperfusion, seems to improve exercise performance, the optimal duration of ischaemia-reperfusion cycles is not established. The present study investigated the effect of ischaemia-reperfusion duration within each IPC cycle on performance in a 2000-m rowing ergometer test.

Methods: After incremental and familiarization tests, 16 trained rowers (mean ± SD: age, 24 ± 11 years; weight, 74.

View Article and Find Full Text PDF

The off-transient pulmonary oxygen uptake (V˙O) response to a single bout of intense, exhaustive exercise has been characterized over the years by a second-order exponential model. In this paper, we report the superiority of a third-order exponential decay in describing the V˙O off-kinetics after a maximal cycling exercise lasting 60-s. Our findings are in accordance with a biphasic pattern of phosphocreatine resynthesis when muscle pH is affected.

View Article and Find Full Text PDF

Purpose: Although high-intensity interval training (HIT) seems to promote greater improvements in aerobic parameters than continuous training, the influence of exercise intensity on [Formula: see text] on-kinetics remains under investigation.

Methods: After an incremental test, twenty-one recreationally trained cyclists performed several time-to-exhaustion tests to determine critical power (CP), and the highest intensity (I HIGH), and the lowest exercise duration (T LOW) at which [Formula: see text] is attained during constant exercise. Subjects also completed a series of step transitions to moderate- and heavy-intensity work rates to determine pulmonary [Formula: see text] on-kinetics.

View Article and Find Full Text PDF

It has been demonstrated that ischemic preconditioning (IPC) improves endurance performance. However, the potential benefits during anaerobic events and the mechanism(s) underlying these benefits remain unclear. Fifteen recreational cyclists were assessed to evaluate the effects of IPC of the upper thighs on anaerobic performance, skeletal muscle activation, and metabolic responses during a 60-s sprint performance.

View Article and Find Full Text PDF

Objectives: Investigate the influence of 4 weeks of walk training with blood flow restriction (BFR) on muscle strength, metabolic responses, 100-m and 400-m performances in an athlete with cerebral palsy.

Methods: An elite Paralympic sprinter (20 years, 176 cm, 64.8 kg) who presented with moderate hemiplegic cerebral palsy (right side impaired) completed four visits before and after 4 weeks of the BFR training: 1) anthropometric measurements, familiarization of maximal voluntary contraction (MVC), and an incremental test; 2) MVC measurements; 3) 400-m performance, and 4) 100-m performance.

View Article and Find Full Text PDF

Purpose: Although time spent at VO2max (t@VO2max) has been suggested as an optimal stimulus for the promotion of greater VO2max improvements, scientific findings supporting this notion are surprisingly still lacking. To investigate this, the present study described t@VO2max in two different severe-intensity interval training regimens and compared its effects on aerobic indexes after a 4-week intervention.

Methods: Twenty-one recreational cyclists performed an incremental exercise test and six time-to-exhaustion tests on four different days to determine VO2max, lactate threshold (LT), critical power (CP) and the highest intensity (IHIGH) and lowest exercise duration (TLOW) at which VO2max was attained.

View Article and Find Full Text PDF

This study investigated the effects of ischemic preconditioning (IPC) on the ratings of perceived exertion (RPE), surface electromyography, and pulmonary oxygen uptake (V̇o2) onset kinetics during cycling until exhaustion at the peak power output attained during an incremental test. A group of 12 recreationally trained cyclists volunteered for this study. After determination of peak power output during an incremental test, they were randomly subjected on different days to a performance protocol preceded by intermittent bilateral cuff pressure inflation to 220 mmHg (IPC) or 20 mmHg (control).

View Article and Find Full Text PDF

To investigate the impact of different training backgrounds on pulmonary oxygen uptake (V̇O2) responses during all-out and supramaximal constant-velocity running exercises, nine sprinters (SPRs) and eight endurance runners (ENDs) performed an incremental test for maximal aerobic velocity (MAV) assessment and two supramaximal running exercises (1-min all-out test and constant-velocity exercise). The V̇O2 responses were continuously determined during the tests (K4b2, Cosmed, Italy). A mono-exponential function was used to describe the V̇O2 onset kinetics during constant-velocity test at 110%MAV, while during 1-min all-out test the peak of V̇O2 (V̇O2peak), the time to achieve the V̇O2peak (tV̇O2peak) and the V̇O2 decrease at last of the test was determined to characterize the V̇O2 response.

View Article and Find Full Text PDF

This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state-MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner.

View Article and Find Full Text PDF

To examine the influence of aerobic and anaerobic indices on repeated sprint (RS) performance and ability (RSA), 8 sprinters (SPR), 8 endurance runners (END), and 8 active participants (ACT) performed the following tests: (i) incremental test; (ii) 1-min test to determine first decay time constant of pulmonary oxygen uptake off-kinetics and parameters related to anaerobic energy supply, lactate exchange, and removal abilities from blood lactate kinetics; and (iii) RS test (ten 35-m sprints, departing every 20 s) to determine best (RSbest) and mean (RSmean) sprint times and percentage of sprint decrement (%Dec). While SPR had a 98%-100% likelihood of having the fastest RSbest (Cohen's d of 1.8 and 1.

View Article and Find Full Text PDF

To verify the effects of training status and blood lactate concentration (BLC) responses on the early excess postexercise oxygen consumption (EPOC), 8 sprinters, 7 endurance runners, and 7 untrained subjects performed an incremental test to determine maximal oxygen uptake and a 1-min all-out test to determine BLC and oxygen uptake recovery curves. BLC kinetics was evaluated to assess the quantity of lactate accumulated during exercise (QlaA), lactate removal ability (k2), and quantity of lactate removed from 0 to 10 min postexercise (QlaR). Oxygen uptake off-kinetics was evaluated to assess the decay time constants (τ1 and τ2); moreover, EPOC was measured during the first 10 min after exercise.

View Article and Find Full Text PDF

The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake (VO2) kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min) visited the laboratory for a series of tests that were performed until exhaustion: 1) an incremental test; 2) three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3) two to four constant speed tests for the determination of the highest constant speed (HS) that still allowed achieving maximal oxygen uptake; and 4) an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used.

View Article and Find Full Text PDF

This study aimed to use the intermittent critical velocity (ICV) model to individualize intermittent exercise and analyze whether a fast-start strategy could increase the time spent at or above 95 %VO(2max) (t95VO(2max)) during intermittent exercise. After an incremental test, seven active male subjects performed three intermittent exercise tests until exhaustion at 100, 110, and 120 % of the maximal aerobic velocity to determine ICV. On three occasions, the subjects performed an intermittent exercise test until exhaustion at 105 % (IE105) and 125 % (IE125) of ICV, and at a speed that was initially set at 125 %ICV but which then decreased to 105 %ICV (IE125-105).

View Article and Find Full Text PDF

Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way.

View Article and Find Full Text PDF