Publications by authors named "Rogerio Richa"

The use of assistive technologies can mitigate or reduce the challenges faced by individuals with motor disabilities to use computer systems. However, those who feature severe involuntary movements often have fewer options at hand. This work describes an application that can recognize the user's head using a conventional webcam, track its motion, model the desired functional movement, and recognize it to enable the use of a virtual keyboard.

View Article and Find Full Text PDF

Purpose: To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts.

View Article and Find Full Text PDF

Laser photocoagulation is currently the standard treatment for sight-threatening diseases worldwide, namely diabetic retinopathy and retinal vein occlusions. The slit lamp biomicroscope is the most commonly used device for this procedure, specially for the treatment of the eye periphery. However, only a small portion of the retina can be visualized through the biomicroscope, complicating the task of localizing and identifying surgical targets, increasing treatment duration and patient discomfort.

View Article and Find Full Text PDF

Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost.

View Article and Find Full Text PDF

In the context of retinal microsurgery, visual tracking of instruments is a key component of robotics assistance. The difficulty of the task and major reason why most existing strategies fail on in-vivo image sequences lies in the fact that complex and severe changes in instrument appearance are challenging to model. This paper introduces a novel approach, that is both data-driven and complementary to existing tracking techniques.

View Article and Find Full Text PDF

Current technical limitations in retinal surgery hinder the ability of surgeons to identify and localize surgical targets, increasing operating times and risks of surgical error. In this paper we present a hybrid tracking and mosaicking method for augmented reality in retinal surgery. The system is a combination of direct and feature-based tracking methods.

View Article and Find Full Text PDF

The past decades have witnessed the notable development of minimally invasive surgery (MIS). The benefits of this modality of surgery for patients are numerous, shortening convalescence, reducing trauma and surgery costs. In this context, robotic assistance aims to make the surgical act more intuitive and safer.

View Article and Find Full Text PDF

Traditionally, tool tracking involves two subtasks: (i) detecting the tool in the initial image in which it appears, and (ii) predicting and refining the configuration of the detected tool in subsequent images. With retinal microsurgery in mind, we propose a unified tool detection and tracking framework, removing the need for two separate systems. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a surgical tool in each frame.

View Article and Find Full Text PDF

In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images.

View Article and Find Full Text PDF

In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking is a difficult task. The purpose of this paper is to present a hybrid tracker that estimates the heart surface deformation using the outputs of multiple visual tracking techniques.

View Article and Find Full Text PDF

In the past few years, several research groups have worked on the design of efficient motion compensation systems for cardiac robotic-assisted Minimally Invasive Surgery (MIS). By providing surgeons with a stabilized work environment, significant improvements of the precision and repeatability of their gestures can be achieved. The design of a motion compensation system requires the accurate measurement of the heart motion, which can be achieved using computer vision techniques for tracking cardiac structures on the heart surface.

View Article and Find Full Text PDF

The design of physiological motion compensation systems for robotic-assisted cardiac Minimally Invasive Surgery (MIS) is a challenging research topic. In this domain, vision-based techniques have proven to be a practical way to retrieve the motion of the beating heart. However due to the complexity of the heart motion and its surface characteristics, efficient tracking is still a complicated task.

View Article and Find Full Text PDF