Publications by authors named "Rogerio J de Assis"

In this work we analyze an Otto-type cycle operating with a working substance composed of a quantum harmonic oscillator (QHO). Unlike other studies in which the work extraction is done by varying the frequency of the QHO and letting it thermalize with a squeezed reservoir, here we submit the QHO to a parametric pumping controlled by the squeezing parameter and let it thermalize with a thermal reservoir. We then investigate the role of the squeezing parameter in our Otto-type engine powered by parametric pumping and show that it is possible to reach the Carnot limit by arbitrarily increasing the squeezing parameter.

View Article and Find Full Text PDF

We studied the thermodynamic properties such as the entropy, heat (JQ), and work (JW) rates involved when an atom passes through a Ramsey zone, which consists of a mode field inside a low-quality factor cavity that behaves classically, promoting rotations on the atomic state. Focusing on the atom, we show that JW predominates when the atomic rotations are successful, maintaining its maximum purity as computed by the von Neumann entropy. Conversely, JQ stands out when the atomic state ceases to be pure due to its entanglement with the cavity mode.

View Article and Find Full Text PDF

The quantum reservoirs commonly considered in open-quantum systems theory are those modeled by quantum harmonic oscillators, which are called bosonic reservoirs. Recently, quantum reservoirs modeled by two-level systems, the so-called fermionic reservoirs, have received attention due to their features. Given that the components of these reservoirs have a finite number of energy levels, unlike bosonic reservoirs, some studies are being carried out to explore the advantages of using this type of reservoir, especially in the operation of heat machines.

View Article and Find Full Text PDF

We study an Otto heat machine whose working substance is a single two-level system interacting with a cold thermal reservoir and with a squeezed hot thermal reservoir. By adjusting the squeezing or the adiabaticity parameter (the probability of transition) we show that our two-level system can function as a universal heat machine, either producing net work by consuming heat or consuming work that is used to cool or heat environments. Using our model we study the performance of these machine in the finite-time regime of the isentropic strokes, which is a regime that contributes to make them useful from a practical point of view.

View Article and Find Full Text PDF

We perform an experiment in which a quantum heat engine works under two reservoirs, one at a positive spin temperature and the other at an effective negative spin temperature, i.e., when the spin system presents population inversion.

View Article and Find Full Text PDF