Background: Lead induces endothelial dysfunction and hypertension in humans and animals. Seven-day exposure to a low dose in rats reduces vasocontractile responses and increases nitric oxide (NO) bioavailability. We hypothesized that this occurs by angiotensin II receptors (AT1/AT2) activation.
View Article and Find Full Text PDFLead exposure induces hypertension and endothelial dysfunction. However, the effects on the pulmonary vasculature have not been explored. In this study, rats exposed to lead acetate for seven days (4μg/100g on the 1st day and 0.
View Article and Find Full Text PDFSpatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM.
View Article and Find Full Text PDFAims: Iron overload in animal models and humans increases oxidative stress and induces cardiomyopathy. It has been suggested that the vasculature is also damaged, but the impacts on vascular reactivity and the underlying mechanisms remain poorly understood. In this study, we aimed to identify possible changes in the vascular reactivity of aortas from iron overloaded rats and investigate the underlying mechanisms.
View Article and Find Full Text PDFBackground: Several studies show that the consumption of vegetable oils, such as soybean oil, rich in polyunsaturated fatty acids (PUFAs) has beneficial health effects by preventing or reducing the risk factors of cardiovascular diseases. While the demonstration of beneficial effects of the consumption of unsaturated fatty acids on the cardiovascular system has been proven in a macroscopic level, the molecular/cellular mechanisms responsible for this phenomenon are poorly understood.
Methods: In this work, a comparative proteomic approach, two-dimensional gel electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF), was applied to investigate proteome differences in the left ventricle (LV) of rats that received 0.
Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function.
View Article and Find Full Text PDFGender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones' effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+) channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences.
View Article and Find Full Text PDFWe recently developed a method to measure mitochondrial proteome dynamics with heavy water ((2)H2O)-based metabolic labeling and high resolution mass spectrometry. We reported the half-lives and synthesis rates of several proteins in the two cardiac mitochondrial subpopulations, subsarcolemmal and interfibrillar (SSM and IFM), in Sprague Dawley rats. In the present study, we tested the hypothesis that the mitochondrial protein synthesis rate is reduced in heart failure, with possible differential changes in SSM versus IFM.
View Article and Find Full Text PDFHeart failure treatment guidelines provide no recommendations regarding the intake of protein, though it has been proposed that increasing protein intake may result in clinical improvement. High-protein intake might improve protein synthesis and cell function, and prevent deterioration in mitochondrial and left ventricular function. We assessed the effects of a high-protein diet on the development of heart failure characterized by cardiac hypertrophy, impaired mitochondrial oxidative metabolism and contractile dysfunction induced by transverse aortic constriction in rats.
View Article and Find Full Text PDFMarine n-3 polyunsaturated fatty acids alter cardiac phospholipids and prevent cardiac pathology in rodents subjected to pressure overload. This approach has not been evaluated in humans or large animals with hypertension-induced pathological hypertrophy. We evaluated docosahexaenoic acid (DHA) in old female dogs with hypertension caused by 16 weeks of aldosterone infusion.
View Article and Find Full Text PDFPurpose: Supplementation with the n3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is beneficial in heart failure patients, however the mechanisms are unclear. DHA is incorporated into membrane phospholipids, which may prevent mitochondrial dysfunction. Thus we assessed the effects of DHA supplementation on cardiac mitochondria and the development of heart failure caused by aortic pressure overload.
View Article and Find Full Text PDFBackground: The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively).
Methods: MI was induced in male rats by ligation of the left coronary artery.
Traditional proteomics provides static assessment of protein content, but not synthetic rates. Recently, proteome dynamics with heavy water ((2)H2O) was introduced, where (2)H labels amino acids that are incorporated into proteins, and the synthesis rate of individual proteins is calculated using mass isotopomer distribution analysis. We refine this approach with a novel algorithm and rigorous selection criteria that improve the accuracy and precision of the calculation of synthesis rates and use it to measure protein kinetics in spatially distinct cardiac mitochondrial subpopulations.
View Article and Find Full Text PDFCarvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction.
View Article and Find Full Text PDFFunctional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion.
View Article and Find Full Text PDFBackground: Glucose 6-phosphate dehydrogenase (G6PD) is the most common deficient enzyme in the world. In failing hearts, G6PD is upregulated and generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is used by the glutathione pathway to remove reactive oxygen species but also as a substrate by reactive oxygen species-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and reactive oxygen species production.
View Article and Find Full Text PDFGlucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology.
View Article and Find Full Text PDFBackground/aim: Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk. However, the mechanism underlying this response is unclear. Our aim was to investigate whether AT(1)receptor blockade would prevent ovariectomy-induced myocardial contractile dysfunction.
View Article and Find Full Text PDFSeven day exposure to a low concentration of lead acetate increases nitric oxide bioavailability suggesting a putative role of K+ channels affecting vascular reactivity. This could be an adaptive mechanism at the initial stages of toxicity from lead exposure due to oxidative stress. We evaluated whether lead alters the participation of K+ channels and Na+/K+)-ATPase (NKA) on vascular function.
View Article and Find Full Text PDFThere is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsaturated fatty acids from marine sources alters cardiac membrane phospholipid fatty acid composition, decreases the onset of new heart failure, and slows the progression of established heart failure.
View Article and Find Full Text PDFMolecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance.
View Article and Find Full Text PDFBackground: Ovarian sex hormones (OSHs) are implicated in cardiovascular function. It has been shown that OSHs play an important role in the long term regulation of cardiac sarcoplasmic reticulum (SR) function and contractility, although early effects of OSHs deprivation on myocardial contractility have not yet been determined. This study evaluated the early and late effects of OSHs deficiency on left ventricular contractility in rats after ovariectomy.
View Article and Find Full Text PDF