Publications by authors named "Rogerio Eiji Hanada"

Bacterial wilt, caused by , is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: RN 11, sp.

View Article and Find Full Text PDF

Here, we report 27 metagenome-assembled bacterial genomes (MAGs) from litter samples of a secondary forest located in Brazil over an Amazonian Dark Earth pool. The data set includes members from the phyla Pseudomonadata (14 MAGs), Actinomycetota (7 MAGs), Bacteroidota (4 MAGs), Bacillota (1 MAG), and Bdellovibrionota (1 MAG).

View Article and Find Full Text PDF

The genus Trichoderma comprises more than 500 valid species and is commonly used in agriculture for the control of plant diseases. In the present study, a Trichoderma species isolated from Scleronema micranthum (Malvaceae) has been extensively characterized and the morphological and phylogenetic data support the proposition of a new fungal species herein named Trichoderma agriamazonicum. This species inhibited the mycelial growth of all the nine phytopathogens tested both by mycoparasitism and by the production of VOCs, with a highlight for the inhibition of Corynespora cassiicola and Colletotrichum spp.

View Article and Find Full Text PDF

The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil.

View Article and Find Full Text PDF

The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupuaçu) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide.

View Article and Find Full Text PDF