Am J Physiol Gastrointest Liver Physiol
September 2016
Divalent metal-ion transporter-1 (DMT1), the principal mechanism by which nonheme iron is taken up at the intestinal brush border, is energized by the H(+)-electrochemical potential gradient. The provenance of the H(+) gradient in vivo is unknown, so we have explored a role for brush-border Na(+)/H(+) exchanger (NHE) isoforms by examining iron homeostasis and intestinal iron handling in mice lacking NHE2 or NHE3. We observed modestly depleted liver iron stores in NHE2-null (NHE2(-/-)) mice stressed on a low-iron diet but no change in hematological or blood iron variables or the expression of genes associated with iron metabolism compared with wild-type mice.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2015
Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e.
View Article and Find Full Text PDFKey Points: An in vitro approach to study gastric development is primary mouse-derived epithelium cultured as three-dimensional spheroids known as organoids. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Organoids maintained in co-culture with immortalized stomach mesenchymal cells express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2015
Am J Physiol Gastrointest Liver Physiol
March 2015
Clostridium difficile infection (CDI) is principally responsible for hospital acquired, antibiotic-induced diarrhea and colitis and represents a significant financial burden on our healthcare system. Little is known about C. difficile proliferation requirements, and a better understanding of these parameters is critical for development of new therapeutic targets.
View Article and Find Full Text PDFBackground: The mechanisms bacteria use to proliferate and alter the normal bacterial composition remain unknown. The ability to link changes in the intestinal micro-environment, such as ion composition and pH, to bacterial proliferation is clinically advantageous for diseases that involve an altered gut microbiota, such as Inflammatory Bowel Disease, obesity and diabetes. In human and mouse intestine, the apical Na(+)/H(+) exchangers NHE2 and NHE3 affect luminal Na(+), water, and pH.
View Article and Find Full Text PDFBackground: With the rise of antibiotic resistance, new alternatives are being sought to effectively modulate the characteristics of gut microbiota to obtain pathogen resistance without the use of antibiotics. In the past, an oligosaccharide derivative of carrots, galursan HF 7K (GHF7K), has been used clinically in Austria and recently in the fowl-industry to promote health. This study examined the potential role of GHF7K as a prebiotic to alter the gut microbiota in mice.
View Article and Find Full Text PDFBackground: Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis.
Aim: The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype.
Am J Physiol Gastrointest Liver Physiol
November 2013
Changes in the intestinal microbiota have been linked to diabetes, obesity, inflammatory bowel disease, and Clostridium difficile (C. difficile)-associated disease. Despite this, it remains unclear how the intestinal environment, set by ion transport, affects luminal and mucosa-associated bacterial composition.
View Article and Find Full Text PDFIn secretory epithelial cells, the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl(-) secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2009
The early events in an intestinal ischemic episode have been difficult to evaluate. Using in vivo microscopy we have analyzed in real-time the effects of short (15 min) and long (40-50 min) ischemia with subsequent reperfusion (IR), evaluating structure, integrity, and functioning of the mouse jejunal mucosa while monitoring blood flow by confocal microscopy. IR was imposed by inflation/deflation of a vascular occluder, and blood flow was monitored and confirmed with scanning confocal imaging.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2008
Basolateral ammonium produces an inhibition of Cl- secretion the magnitude of which is dependent on the NH4+ to K+ concentration ratio. Inhibition is maximal at a mole fraction ratio of 0.25 K+ to NH4+.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2008
Although colonic lumen NH(4)(+) levels are high, 15-44 mM normal range in humans, relatively few studies have addressed the transport mechanisms for NH(4)(+). More extensive studies have elucidated the transport of NH(4)(+) in the kidney collecting duct, which involves a number of transporter processes also present in the distal colon. Similar to NH(4)(+) secretion in the renal collecting duct, we show that the distal colon secretory model, T84 cell line, has the capacity to secrete NH(4)(+) and maintain an apical-to-basolateral NH(4)(+) gradient.
View Article and Find Full Text PDFMutations in the SLC26A3 (DRA (down-regulated in adenoma)) gene constitute the molecular etiology of congenital chloride-losing diarrhea in humans. To ascertain its role in intestinal physiology, gene targeting was used to prepare mice lacking slc26a3. slc26a3-deficient animals displayed postpartum lethality at low penetrance.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2007
The role of Slc26a6 (PAT1) on apical Cl-/HCO3- exchange and bicarbonate secretion in pancreatic duct cells was investigated using Slc26a6 null and wild-type (WT) mice. Apical Cl-/HCO3- exchange activity was measured with the pH-sensitive dye BCECF in microperfused interlobular ducts. The HCO3(-)-influx mode of apical [Cl-]i/[HCO3-]o exchange (where brackets denote concentration and subscripts i and o denote intra- and extracellular, respectively) was dramatically upregulated in Slc26a6 null mice (P < 0.
View Article and Find Full Text PDFSLC26A7 is a Cl(-)/HCO(3)(-) exchanger that is expressed on the basolateral membrane and in the cytoplasm of two distinct acid-secreting epithelial cells: The A-intercalated cells in the kidney outer medullary collecting duct and the gastric parietal cells. The intracellular localization of SLC26A7 suggests the possibility of trafficking between cell membrane and intracellular compartments. For testing this hypothesis, full-length human SLC26A7 cDNA was fused with green fluorescence protein and transiently expressed in MDCK epithelial cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2005
Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells.
View Article and Find Full Text PDFThe kidney Na(+):HCO(3)(-) cotransporter NBC1 is located exclusively on the basolateral membrane of kidney proximal tubule cells and is responsible for the reabsorption of majority of filtered bicarbonate. Two well-described missense mutations in NBC1, R510H and S427L, are associated with renal tubular acidosis (RTA). However, the exact relationship between these mutations and NBC1 dysregulation remains largely unknown.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2005
Ischemia is the central pathogenic factor underlying a spectrum of intestinal disorders. The study of the cellular signaling responses to ischemic stress in nonepithelial cells has progressed substantially in the previous several years, but little is known about the response in epithelial cells. Unique features of the epithelial response to ischemic stress suggest differential regulation with regards to signaling.
View Article and Find Full Text PDFThe Na+-HCO3- cotransporter NBC1 is located exclusively on the basolateral membrane and mediates vectorial transport of bicarbonate in a number of epithelia, including kidney and pancreas. To identify the motifs that direct the targeting of kidney NBC1 to basolateral membrane, wild type and various carboxyl-terminally truncated kidney NBC1 mutants were generated, fused translationally in-frame to GFP, and transiently expressed in kidney epithelial cells. GFP was linked to the NH2 terminus of NBC1, and labeling was examined by confocal microscopy.
View Article and Find Full Text PDFCross talk between the phosphatidylinositol 3-kinase (PI3-K) and mitogen-activating protein kinase (MAPK)1/2 signaling cascades in response to aldosterone-induced K-RasA was investigated in renal A6 epithelial cells. In addition, the contribution of these signaling pathways to aldosterone-stimulated Na(+) transport was investigated. Aldosterone increased active K-RasA levels in A6 cells resulting in activation of downstream effectors in both the MAPK1/2 and PI3-K cascades with K-RasA directly interacting with the catalytic p110 subunit of PI3-K in a steroid-dependent manner.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2004
A significant amount of ammonium (NH4+) is absorbed by the colon. The nature of NH4+ effects on transport and NH4+ transport itself in colonic epithelium is poorly understood. The goal of this study was to elucidate the effects of NH4+ on cAMP-stimulated Cl- secretion in the colonic cell line T84.
View Article and Find Full Text PDFProtein kinase C (PKC) is known to regulate epithelial barrier function. However, the effect of specific PKC isozymes, and their mechanism of action, are largely unknown. We determined that the nonphorbol ester PKC agonist bryostatin-1 increased transepithelial electrical resistance (TER), a marker of barrier function, in confluent T84 epithelia.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2003
Tumor necrosis factor (TNF) increases epithelial permeability in many model systems. Protein kinase C (PKC) isozymes regulate epithelial barrier function and alter ligand-receptor interactions. We sought to define the impact of PKC on TNF-induced barrier dysfunction in T84 intestinal epithelia.
View Article and Find Full Text PDFIntroduction: Calcium-activated chloride conductance has been identified in normal pancreatic duct cells. Recent in vitro evidence suggests that angiotensin II (AngII) stimulates pancreatic secretion in both cystic fibrosis (CFPAC) and transformed pancreatic cells.
Aims: To investigate calcium-mediated stimulatory effects of AngII in both nontransformed dog pancreatic duct epithelial (DPDE) and CFPAC cells.