Publications by authors named "Roger Schvaneveldt"

The human papillomavirus (HPV) vaccine protects adolescents and young adults from 9 high-risk HPV virus types that cause 90% of cervical and anal cancers and 70% of oropharyngeal cancers. This study extends our previous research analyzing online content concerning the HPV vaccination in social media platforms used by young adults, in which we used Pathfinder network scaling and methods of distributional semantics to characterize differences in knowledge organization reflected in consumer- and expert-generated online content. The current study extends this approach to evaluate HPV vaccine perceptions among young adults who populate Reddit, a major social media platform.

View Article and Find Full Text PDF

This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge.

View Article and Find Full Text PDF

In this paper we utilize methods of hyperdimensional computing to mediate the identification of therapeutically useful connections for the purpose of literature-based discovery. Our approach, named Predication-based Semantic Indexing, is utilized to identify empirically sequences of relationships known as "discovery patterns", such as "drug x INHIBITS substance y, substance y CAUSES disease z" that link pharmaceutical substances to diseases they are known to treat. These sequences are derived from semantic predications extracted from the biomedical literature by the SemRep system, and subsequently utilized to direct the search for known treatments for a held out set of diseases.

View Article and Find Full Text PDF

Unlabelled: Background. EpiphaNet is an interactive knowledge discovery system which enables researchers to explore visually sets of relations extracted from MEDLINE using a combination of language processing techniques. In this paper, we discuss the theoretical and methodological foundations of the system, and evaluate the utility of the models that underlie it for literature-based discovery.

View Article and Find Full Text PDF

The paradigm of literature-based knowledge discovery originated by Swanson involves finding meaningful associations between terms or concepts that have not occurred together in any previously published document. While several automated approaches have been applied to this problem, these generally evaluate the literature at a point in time, and do not evaluate the role of change over time in distributional statistics as an indicator of meaningful implicit associations. To address this issue, we develop and evaluate Symmetric Random Indexing (SRI), a novel variant of the Random Indexing (RI) approach that is able to measure implicit association over time.

View Article and Find Full Text PDF

The discovery of implicit connections between terms that do not occur together in any scientific document underlies the model of literature-based knowledge discovery first proposed by Swanson. Corpus-derived statistical models of semantic distance such as Latent Semantic Analysis (LSA) have been evaluated previously as methods for the discovery of such implicit connections. However, LSA in particular is dependent on a computationally demanding method of dimension reduction as a means to obtain meaningful indirect inference, limiting its ability to scale to large text corpora.

View Article and Find Full Text PDF

Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation.

View Article and Find Full Text PDF

Objective: We sought to improve understanding of visual perception in aviation to mitigate mishaps in approaches to landing.

Background: Research has attempted to identify the most salient visual cues for glide path performance in impoverished visual conditions. Numerous aviation accidents caused by glide path overestimation (GPO) have occurred when a low glide path was induced by a black hole illusion (BHI) in featureless terrain during night approaches.

View Article and Find Full Text PDF