Publications by authors named "Roger Rodrigo Fernandes"

The increase in life expectancy has led to a higher incidence of osteoporosis, characterized by an imbalance in bone remodeling. Several drugs are used for its treatment, but most promote undesirable side effects. The present investigation evaluated the effects of two low concentrations of grape seed extract (GSE) rich in proanthocyanidins on MC3T3-E1 osteoblastic cells.

View Article and Find Full Text PDF

This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells' differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface.

View Article and Find Full Text PDF

Osteoporosis is a prevalent disease with a high incidence in women at the onset of menopause mainly because of hormonal changes, genetics, and lifestyle, leading to decreased bone mass and risk of fractures. Maintaining bone mass is a challenge for postmenopausal women, with calcium-rich food intake being essential for bone health. Nevertheless, other nutrients such as carotenoids may influence bone metabolism because of their high antioxidant properties.

View Article and Find Full Text PDF

Chemoresistance is associated with tumor recurrence, metastases, and short survival. Cisplatin is one of the most used chemotherapies in cancer treatment, including head and neck squamous cell carcinoma (HNSCC), and many patients develop resistance. Here, we established cell lines resistant to cisplatin to better understand epigenetics and biological differences driving the progression of HNSCC after treatment.

View Article and Find Full Text PDF

The purpose of this study is to analyze the influence of InGaAlP diode laser (660 nm) with or without an odontogenic medium (OM) in the functional activity of OD-21 cells. Undifferentiated OD-21 pulp cells were cultivated with or without OM and divided into four groups (n = 5): nonirradiated control (C -), nonirradiated + OM (C +), irradiated (L -), and irradiated + OM (L +). Laser application was performed in two sessions of a 24-h interval with an irradiance of 11.

View Article and Find Full Text PDF

The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources.

View Article and Find Full Text PDF

Natural substances with antioxidant effects may benefit prevention and treatment of people with or prone to bone diseases after menopause, such as osteoporosis. This study aimed to evaluate the in vitro effect of preadministration of yerba mate extract (YM) in the metabolism of MC3T3-E1 osteoblasts exposed to hydrogen peroxide (HO). The cells (MC3T3-E1) were cultured in 24-well plates with the concentration of 1 μg/mL yerba mate extract dissolved in culture medium throughout the culture period.

View Article and Find Full Text PDF

Recent studies suggest that osteoporosis, in addition to the damage caused in long bones, may cause deterioration in the jaws, especially in alveolar bone sites, with effects in the progress of periodontal disease as well as in bone healing. The aim of this study was to evaluate the effect of osteoporosis in the metabolism of rat alveolar bone osteoblasts. There were used 10 female rats divided in two experimental groups (Sham and OVX), which were ovariectomized and after 8 weeks euthanized to collect mandibular bone samples in order to isolate osteoblastic cells.

View Article and Find Full Text PDF

This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography.

View Article and Find Full Text PDF

Unlabelled: Calcium aluminate cement (CAC) has been highlighted as a promising alternative for endodontic use aiming at periapical tissue repair. However, its effects on dental pulp cells have been poorly explored.

Objective: This study assessed the impact of calcium chloride (CaCl2) and bismuth oxide (Bi2O3) or zinc oxide (ZnO) additives on odontoblast cell response to CAC.

View Article and Find Full Text PDF

Background: The purpose of the study was to analyze the effect of cell therapy on the repair process in calvaria defects in rats subjected to irradiation.

Methods: Bone marrow mesenchymal cells were characterized for osteoblastic phenotype. Calvariae of male Wistar rats were irradiated (20 Gy) and, after 4 weeks, osteoblastic cells were placed in surgically created defects in irradiated (IRC) and control animals (CC), paired with untreated irradiated (IR) and control (C) animals.

View Article and Find Full Text PDF

Recent studies on functional tissue regeneration have focused on substances that favor cell proliferation and differentiation, including the bioactive phenolic compounds present in grape seed extract (GSE). The aim of this investigation was to evaluate the stimulatory potential of GSE in the functional activity of undifferentiated pulp cells and odontoblast-like cells. OD-21 and MDPC-23 cell lines were cultivated in odontogenic medium until subconfluence, seeded in 24-well culture plates in a concentration of 2x104/well and divided into: 1) OD-21 without GSE; 2) OD-21+10 µg/mL of GSE; 3) MDPC-23 without GSE; 4) MDPC-23+10 µg/mL of GSE.

View Article and Find Full Text PDF

Antioxidant properties of several nutrients may influence bone metabolism, affording protection against damaging effects caused by oxidative stress. Thus, we hypothesized that lycopene may benefit bone tissue metabolism and functional activity of osteoblastic cells from bone marrow of osteoporotic female rats. Wistar rats were ovariectomized and paired with sham animals.

View Article and Find Full Text PDF

Investigation on functional genome research may contribute to the knowledge of functional roles of different mRNAs and miRNAs in bone cells of osteoporotic animals. Currently, few studies indicate the changes in gene modulation that osteoporosis causes in osteoblastic cells from different sites. Thus, the purpose of this investigation was to evaluate cell viability, alkaline phosphatase activity and modulation of mRNAs/miRNAs in osteoblastic cells from calvaria and bone marrow by means of microarray technology.

View Article and Find Full Text PDF

Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution.

View Article and Find Full Text PDF

The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta1, TGF-beta2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days.

View Article and Find Full Text PDF