Publications by authors named "Roger R Zauel"

Using a finite element (FE) method called biomechanical stereology, Wang et al. previously reported increased microcrack formation and propagation in bone samples from patients with a history of osteoporotic fracture as compared to normal subjects. In this study, we re-analyzed the data from Wang's report to determine the microscopic differences between bone tissue from osteoporotic patients and normal subjects that caused these different patterns of bone tissue damage between the groups.

View Article and Find Full Text PDF

A two-dimensional (2D) finite element (FE) method was used to estimate the ability of bone tissue to sustain damage as a function of postfailure modulus. Briefly, 2D nonlinear compact-tension FE models were created from quantitative back-scattered electron images taken of human iliac crest bone specimens. The effects of different postfailure moduli on predicted microcrack propagation were examined.

View Article and Find Full Text PDF

Biomechanical stereology is proposed as a two-dimensional (2D) finite element (FE) method to estimate the ability of bone tissue to sustain damage and to separate patients with osteoporotic fracture from normal controls. Briefly, 2D nonlinear compact tension FE models were created from quantitative back scattered electron images taken of iliac crest bone specimens collected from the individuals with or without osteoporotic fracture history. The effects of bone mineral microstructure on predicted bone fracture toughness and microcrack propagation were examined.

View Article and Find Full Text PDF