Publications by authors named "Roger Nisbet"

Unlabelled: The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching.

View Article and Find Full Text PDF

In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments in E.

View Article and Find Full Text PDF

A core challenge for ecological risk assessment is to integrate molecular responses into a chain of causality to organismal or population-level outcomes. Bioenergetic theory may be a useful approach for integrating suborganismal responses to predict organismal responses that influence population dynamics. We describe a novel application of dynamic energy budget (DEB) theory in the context of a toxicity framework (adverse outcome pathways [AOPs]) to make quantitative predictions of chemical exposures to individuals, starting from suborganismal data.

View Article and Find Full Text PDF

Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals' survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions.

View Article and Find Full Text PDF

Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models.

View Article and Find Full Text PDF

Ecological risk assessment (ERA) is charged with assessing the likelihood a chemical will have adverse environmental or ecological effects. When assessing the risk of a potential contaminant to biological organisms, ecologists are most concerned with the sustainability of populations of organisms, rather than protecting every individual. However, ERA most commonly relies on data on the effect of a potential contaminant on individuals because these experiments are more feasible than costly population-level exposures.

View Article and Find Full Text PDF

Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical.

View Article and Find Full Text PDF

Many corals form close associations with a diverse assortment of coral-dwelling fishes and other fauna. As coral reefs around the world are increasingly threatened by mass bleaching events, it is important to understand how these biotic interactions influence corals' susceptibility to bleaching. We used dynamic energy budget modeling to explore how nitrogen excreted by coral-dwelling fish affects the physiological performance of host corals.

View Article and Find Full Text PDF

Predicting and disrupting transmission of human parasites from wildlife hosts or vectors remains challenging because ecological interactions can influence their epidemiological traits. Human schistosomes, parasitic flatworms that cycle between freshwater snails and humans, typify this challenge. Human exposure risk, given water contact, is driven by the production of free-living cercariae by snail populations.

View Article and Find Full Text PDF

The pioneering work of Kermack and McKendrick (1927, 1932, 1933) is now most known for introducing the SIR model, which divides a population into discrete compartments for susceptible, infected and removed individuals. The SIR model is the archetype of widely used compartmental models for epidemics. It is sometimes forgotten, that Kermack and McKendrick introduced the SIR model as a special case of a more general framework.

View Article and Find Full Text PDF

Coal ash contains numerous contaminants and is the focus of regulatory actions and risk assessments due to environmental spills. We exposed Daphnia magna to a gradient of coal ash contamination under high and low food rations to assess the sublethal effects of dietary exposures. Whereas exposure to contaminants resulted in significant reductions in growth and reproduction in daphnids, low, environmentally relevant food rations had a much greater effect on these endpoints.

View Article and Find Full Text PDF

1. The simple bioenergetic models in the family of Dynamic Energy Budget (DEB) consist of a small number of state equations quantifying universal processes, such as feeding, maintenance, development, reproduction and growth. Linking these organismal level processes to underlying suborganismal mechanisms at the molecular, cellular and organ level constitutes a major challenge for predictive ecological risk assessments.

View Article and Find Full Text PDF

Engineered nanomaterials (ENMs) can enter agroecosystems because of their widespread use and disposal. Within soil, ENMs may affect legumes and their dinitrogen (N) fixation, which are critical for food supply and N-cycling. Prior research focusing on end point treatment effects has reported that N-fixing symbioses in an important food legume, soybean, can be impaired by ENMs.

View Article and Find Full Text PDF

A working group at the National Institute for Mathematical and Biological Synthesis (NIMBioS) explored the feasibility of integrating 2 complementary approaches relevant to ecological risk assessment. Adverse outcome pathway (AOP) models provide "bottom-up" mechanisms to predict specific toxicological effects that could affect an individual's ability to grow, reproduce, and/or survive from a molecular initiating event. Dynamic energy budget (DEB) models offer a "top-down" approach that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations related to the acquisition and processing of energy resources.

View Article and Find Full Text PDF

Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within-host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource-explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory.

View Article and Find Full Text PDF

Nanozerovalent iron (nZVI) is widely used for its ability to remove or degrade environmental contaminants. However, the effect of nZVI-pollutant complexes on organisms has not been tested. We demonstrate the ability of a sulfidized derivative of nZVI (FeSSi) to sorb cadmium (Cd) from aqueous media and alleviate Cd toxicity to a freshwater alga for 32 days.

View Article and Find Full Text PDF

Coral reef ecosystems owe their ecological success - and vulnerability to climate change - to the symbiotic metabolism of corals and Symbiodinium spp. The urgency to understand and predict the stability and breakdown of these symbioses (i.e.

View Article and Find Full Text PDF

Daphnia in the natural environment experience fluctuations in algal food supply, with periods when algal populations bloom and seasons when Daphnia have very little algal food. Standardized chronic toxicity tests, used for ecological risk assessment, dictate that Daphnia must be fed up to 400 times more food than they would experience in the natural environment (outside of algal blooms) for a toxicity test to be valid. This disconnect can lead to underestimating the toxicity of a contaminant.

View Article and Find Full Text PDF
Article Synopsis
  • Research on carbonaceous nanomaterials (CNMs) in agricultural soils is limited, prompting a study on their effects on soybean growth and nitrogen fixation in soils with varying concentrations of CNMs like multiwalled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB).
  • Plants exposed to any CNM treatment flowered significantly earlier than controls, showing increased reproductive success, but also demonstrated reduced growth, with some treatments resulting in shorter plants and less overall leaf area.
  • The study found that lower concentrations of CNMs negatively impacted nodulation and nitrogen fixation potential more than higher concentrations, possibly due to better bioavailability of CNMs in soil at lower doses, highlighting complexities in how CNMs affect plant
View Article and Find Full Text PDF

Recent nanotoxicity studies have demonstrated non-monotonic dose-response mechanisms for planted soybean that have a symbiotic relationship with bacteroids in their root nodules: reduction of growth and seed production was greater for low, as compared to high, exposures. To investigate mechanistic underpinnings of the observed patterns, we formulated an energy budget model coupled to a toxicokinetic module describing bioaccumulation, and two toxicodynamic modules describing toxic effects on host plant and symbionts. By fitting data on plants exposed to engineered CeO nanoparticles to the newly formulated model, we show that the non-monotonic patterns can be explained as the interaction of two, individually monotonic, dose-response processes: one for the plant and the other for the symbiont.

View Article and Find Full Text PDF

Fish, even of the same species, can exhibit substantial variation in energy density (energy per unit wet weight). Most of this variation is due to differences in the amount of storage lipids. In addition to their importance as energy reserves for reproduction and for survival during unfavourable conditions, the accumulation of lipids represents a large energetic flux for many species, so figuring out how this energy flux is integrated with other major energy fluxes (growth, reproduction) is critical for any general theory of organismal energetics.

View Article and Find Full Text PDF

High Throughput Screening (HTS) using in vitro assessments at the subcellular level has great promise for screening new chemicals and emerging contaminants to identify high-risk candidates, but their linkage to ecological impacts has seldom been evaluated. We tested whether a battery of subcellular HTS tests could be used to accurately predict population-level effects of engineered metal nanoparticles (ENPs) on marine phytoplankton, important primary producers that support oceanic food webs. To overcome well-known difficulties of estimating ecologically meaningful toxicity parameters, we used novel Dynamic Energy Budget and Toxicodynamic (DEBtox) modeling techniques to evaluate impacts of ENPs on population growth rates.

View Article and Find Full Text PDF

With increasing use, manufactured nanomaterials (MNMs) may enter soils and impact agriculture. Herein, soybean (Glycine max) was grown in soil amended with either nano-CeO (0.1, 0.

View Article and Find Full Text PDF