Publications by authors named "Roger Meurer"

High-density lipoprotein (HDL)-targeting therapies, including reconstituted HDL (rHDL), are attractive agents for treating dyslipidemia and atherosclerosis, as they may increase HDL levels and enhance therapeutic activities associated with HDL, including reverse cholesterol transport (RCT). Using CSL-111, a rHDL consisting of native human apolipoprotein AI (hApoAI) and phospholipids, we characterized the acute effects of rHDL administration in C57Bl/6 mice to (i) further our understanding of the mechanism of action of rHDL, and (ii) evaluate the usefulness of the mouse as a preclinical model for HDL-targeting therapies. After a single injection of CSL-111, there was a dose- and time-dependent increase of hApoAI, human pre-β HDL, total cholesterol, and triglycerides in serum, consistent with the effects of CSL-111 in humans.

View Article and Find Full Text PDF

Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides.

View Article and Find Full Text PDF

Ezetimibe (Zetia®), a cholesterol-absorption inhibitor (CAI) approved by the FDA for the treatment of hypercholesterolemia, is believed to target the intestine protein Niemann-Pick C1-Like 1 (NPC1L1) or its pathway. A spiroimidazolidinone NPC1L1 inhibitor identified by virtual screening showed moderate binding activity but was not efficacious in an in vivo rodent model of cholesterol absorption. Synthesis of analogs established the structure-activity relationships for binding activity, and resulted in compounds with in vivo efficacy, including 24, which inhibited plasma cholesterol absorption by 67% in the mouse, thereby providing proof-of-concept that non-β-lactams can be effective CAIs.

View Article and Find Full Text PDF

The purinergic receptor P2Y(13) has been shown to play a role in the uptake of holo-HDL particles in in vitro hepatocyte experiments. In order to determine the role of P2Y(13) in lipoprotein metabolism in vivo, we ablated the expression of this gene in mice. Here we show that P2Y(13) knockout mice have lower fecal concentrations of neutral sterols (-27%±2.

View Article and Find Full Text PDF

A series of spiroimidazolidinone NPC1L1 inhibitors was discovered by virtual screening of the Merck corporate sample repository using 3D-similarity-based screening. Selection of 330 compounds for testing in an in vitro NPC1L1 binding assay yielded six hits in six distinct chemical series. Follow-up 2D similarity searching yielded several sub- to low-micromolar leads; among these was spiroimidazolidinone 10, with an IC(50) of 2.

View Article and Find Full Text PDF

Here we describe the use of SELDI-MS to detect dose-dependent peptide changes in plasma from mice treated with vehicle or rosiglitazone at one of two doses (10 and 30 mg/kg). SELDI features differentiating spectra from the three conditions were found and used to train classifiers. Samples treated with vehicle could be reliably distinguished from samples treated with either dose, but samples treated with the different doses could not be reliably distinguished from one another.

View Article and Find Full Text PDF

Here, we characterize the actions of MK-0767, a dual ligand of the nuclear receptors peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma. In cell-based assays, MK-0767 produced potent activation of human PPARgamma and PPARalpha with a gamma:alpha potency ratio of approximately 2. The dual agonist induced high affinity interactions of PPARalpha and PPARgamma with the transcriptional coactivator CBP in vitro.

View Article and Find Full Text PDF

A new class of O-arylmandelic acid PPAR agonists show excellent anti-hyperglycemic efficacy in a db/db mouse model of DM2. These PPARalpha-weighted agonists do not show the typical PPARgamma associated side effects of BAT proliferation and cardiac hypertrophy in a rat tolerability assay.

View Article and Find Full Text PDF