We present the INSPIRE dataset, a publicly available research dataset in perioperative medicine, which includes approximately 130,000 surgical operations at an academic institution in South Korea over a ten-year period between 2011 and 2020. This comprehensive dataset includes patient characteristics such as age, sex, American Society of Anesthesiologists physical status classification, diagnosis, surgical procedure code, department, and type of anaesthesia. The dataset also includes vital signs in the operating theatre, general wards, and intensive care units (ICUs), laboratory results from six months before admission to six months after discharge, and medication during hospitalisation.
View Article and Find Full Text PDFBackground: Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk stratifying patients with cardiovascular disease, particularly ischemic heart disease. We hypothesized that a deep neural network could accurately identify patients with regional wall motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG).
Methods: This observational, retrospective study included patients who were treated at Beth Israel Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of each other between 2008 and 2019.
Aims: Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work.
View Article and Find Full Text PDFObjectives: Although illness severity scoring systems are widely used to support clinical decision-making and assess ICU performance, their potential bias across different age, sex, and primary language groups has not been well-studied.
Design Setting And Patients: We aimed to identify potential bias of Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) IVa scores via large ICU databases.
Setting/patients: This multicenter, retrospective study was conducted using data from the Medical Information Mart for Intensive Care (MIMIC) and eICU Collaborative Research Database.
Background: Comorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.
View Article and Find Full Text PDFDigital data collection during routine clinical practice is now ubiquitous within hospitals. The data contains valuable information on the care of patients and their response to treatments, offering exciting opportunities for research. Typically, data are stored within archival systems that are not intended to support research.
View Article and Find Full Text PDFBackground: Multiple organ dysfunction syndrome (MODS) is associated with a high risk of mortality among older patients. Current severity scores are limited in their ability to assist clinicians with triage and management decisions. We aim to develop mortality prediction models for older patients with MODS admitted to the ICU.
View Article and Find Full Text PDFObjectives: To develop and demonstrate the feasibility of a Global Open Source Severity of Illness Score (GOSSIS)-1 for critical care patients, which generalizes across healthcare systems and countries.
Design: A merger of several critical care multicenter cohorts derived from registry and electronic health record data. Data were split into training (70%) and test (30%) sets, using each set exclusively for development and evaluation, respectively.
The high rate of false arrhythmia alarms in Intensive Care Units (ICUs) can lead to disruption of care, negatively impacting patients' health through noise disturbances, and slow staff response time due to alarm fatigue. Prior false-alarm reduction approaches are often rule-based and require hand-crafted features from physiological waveforms as inputs to machine learning classifiers. Despite considerable prior efforts to address the problem, false alarms are a continuing problem in the ICUs.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2021
A massive amount of multimodal data are continuously collected in the intensive care unit (ICU) along each patient stay, offering a great opportunity for the development of smart monitoring devices based on artificial intelligence (AI). The two main sources of relevant information collected in the ICU are the electronic health records (EHRs) and vital sign waveforms continuously recorded at the bedside. While EHRs are already widely processed by AI algorithms for prompt diagnosis and prognosis, AI-based assessments of the patients' pathophysiological state using waveforms are less developed, and their use is still limited to real-time monitoring for basic visual vital sign feedback at the bedside.
View Article and Find Full Text PDFBackground: Fluid overload is associated with poor outcomes. Clinicians might be reluctant to initiate diuretic therapy for patients with recent vasopressor use. We estimated the effect on 30-day mortality of withholding or delaying diuretics after vasopressor use in patients with probable fluid overload.
View Article and Find Full Text PDFObjectives: Whether unaccounted determinants of hyponatremia, rather than water excess per se, primarily associate with mortality in observational studies has not been explicitly examined.
Design: Retrospective cohort study of the association between hyponatremia and mortality, stratified by outpatient diuretic use in three strata.
Setting: An inception cohort of 13,661 critically ill patients from a tertiary medical center.
Chest radiography is an extremely powerful imaging modality, allowing for a detailed inspection of a patient's chest, but requires specialized training for proper interpretation. With the advent of high performance general purpose computer vision algorithms, the accurate automated analysis of chest radiographs is becoming increasingly of interest to researchers. Here we describe MIMIC-CXR, a large dataset of 227,835 imaging studies for 65,379 patients presenting to the Beth Israel Deaconess Medical Center Emergency Department between 2011-2016.
View Article and Find Full Text PDFObjectives: Electroencephalogram features predict neurologic recovery following cardiac arrest. Recent work has shown that prognostic implications of some key electroencephalogram features change over time. We explore whether time dependence exists for an expanded selection of quantitative electroencephalogram features and whether accounting for this time dependence enables better prognostic predictions.
View Article and Find Full Text PDFIntroduction: Sepsis results from a dysregulated host response to an infection that is associated with an imbalance between pro- and anti-inflammatory cytokines. This imbalance is hypothesized to be a driver of patient mortality. Certain autoimmune diseases modulate the expression of cytokines involved in the pathophysiology of sepsis.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
The judgment of intensive care unit (ICU) providers is difficult to measure using conventional structured electronic medical record (EMR) data. However, provider sentiment may be a proxy for such judgment. Utilizing 10 years of EMR data, this study evaluates the association between provider sentiment and diagnostic imaging utilization.
View Article and Find Full Text PDFCritical care patients are monitored closely through the course of their illness. As a result of this monitoring, large amounts of data are routinely collected for these patients. Philips Healthcare has developed a telehealth system, the eICU Program, which leverages these data to support management of critically ill patients.
View Article and Find Full Text PDFComput Cardiol (2010)
September 2018
The PhysioNet/Computing in Cardiology Challenge 2018 focused on the use of various physiological signals (EEG, EOG, EMG, ECG, SaO) collected during polysomnographic sleep studies to detect sources of arousal (non-apnea) during sleep. A total of 1,983 polysomnographic recordings were made available to the entrants. The arousal labels for 994 of the recordings were made available in a public training set while 989 labels were retained in a hidden test set.
View Article and Find Full Text PDFThe high rate of intensive care unit false arrhythmia alarms can lead to disruption of care and slow response time due to desensitization of clinical staff. We study the use of machine learning models to detect false ventricular tachycardia (v-tach) alarms using ECG waveform recordings. We propose using a Supervised Denoising Autoencoder (SDAE) to detect false alarms using a low-dimensional representation of ECG dynamics learned by minimizing a combined reconstruction and classification loss.
View Article and Find Full Text PDFThe PhysioNet/Computing in Cardiology (CinC) Challenge 2017 focused on differentiating AF from noise, normal or other rhythms in short term (from 9-61 s) ECG recordings performed by patients. A total of 12,186 ECGs were used: 8,528 in the public training set and 3,658 in the private hidden test set. Due to the high degree of inter-expert disagreement between a significant fraction of the expert labels we implemented a mid-competition bootstrap approach to expert relabeling of the data, levering the best performing Challenge entrants' algorithms to identify contentious labels.
View Article and Find Full Text PDFReal-time prediction of mortality for intensive care unit patients has the potential to provide physicians with a simple and easily interpretable synthesis of patient acuity. Here we extract data from a random time during each patient's ICU stay. We believe this sampling scheme allows for the application of the model(s) across a future patient's entire ICU stay.
View Article and Find Full Text PDFObjectives: In quantitative research, understanding basic parameters of the study population is key for interpretation of the results. As a result, it is typical for the first table ("Table 1") of a research paper to include summary statistics for the study data. Our objectives are 2-fold.
View Article and Find Full Text PDF