Publications by authors named "Roger Long"

Summary: Skeletal abnormalities with delayed bone age and decreased linear bone growth are commonly found in children with prolonged juvenile hypothyroidism. However, rachitic bone abnormalities have not been previously reported in children with acquired hypothyroidism. Here, we present a case of newly found rickets in an 8-year-old female with untreated acquired hypothyroidism secondary to Hashimoto's thyroiditis.

View Article and Find Full Text PDF

Background: Postoperative hypocalcemia because of hypoparathyroidism is the most common complication of total thyroidectomy in children. We hypothesized that most children with postoperative hypocalcemia would be eucalcemic by 12 mo and sought to define risk factors for permanent hypoparathyroidism.

Methods: We retrospectively reviewed children who underwent total thyroidectomy at a single children's hospital from 2012 to 2019.

View Article and Find Full Text PDF

Schimke immunoosseous dysplasia (SIOD) is a multisystemic condition characterized by early arteriosclerosis and progressive renal insufficiency, among other features. Many SIOD patients have severe, migraine-like headaches, transient neurologic attacks, or cerebral ischemic events. Cerebral events could be exacerbated or precipitated by hypertension, and it is unclear how these are related to arteriosclerotic changes as dyslipidemia is also a feature of SIOD.

View Article and Find Full Text PDF

Background: Hyperkyphosis, an excessive anterior curvature in the thoracic spine, is associated with reduced health status in older adults. Hyperkyphosis is highly prevalent, more common in older women than men. There is no standard intervention to reduce age-related hyperkyphosis.

View Article and Find Full Text PDF

The ATP-sensitive potassium channel (K) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic β-cells. The pancreatic K channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1).

View Article and Find Full Text PDF

Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4).

View Article and Find Full Text PDF

Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear.

View Article and Find Full Text PDF

To investigate the role of IGF-I signaling in osterix (OSX)-expressing cells in the skeleton, we generated IGF-I receptor (IGF-IR) knockout mice ((OSX)IGF-IRKO) (floxed-IGF-IR mice × OSX promoter-driven GFP-labeled cre-recombinase [(OSX)GFPcre]), and monitored postnatal bone development. At day 2 after birth (P2), (OSX)GFP-cre was highly expressed in the osteoblasts in the bone surface of the metaphysis and in the prehypertrophic chondrocytes (PHCs) and inner layer of perichondral cells (IPCs). From P7, (OSX)GFP-cre was highly expressed in PHCs, IPCs, cartilage canals (CCs), and osteoblasts (OBs) in the epiphyseal secondary ossification center (SOC), but was only slightly expressed in the OBs in the metaphysis.

View Article and Find Full Text PDF

Context: Mutations of the CYP24A1 gene encoding the 24-hydroxylase (24OHase) that inactivates metabolites of vitamin D can cause hypercalcemia in infants and adults; in vitro assays of 24OHase activity have been difficult.

Objective: We sought an alternative assay to characterize a CYP24A1 mutation in a young adult with bilateral nephrolithiasis and hypercalcemia associated with ingestion of excess vitamin D supplements and robust dairy intake for 5 years.

Methods: CYP24A1 exons were sequenced from leukocyte DNA.

View Article and Find Full Text PDF

Recognition of the gene implicated in a Mendelian disorder subsequently leads to an expansion of potential phenotypes associated with mutations in that gene as patients with features beyond the core phenotype are identified by sequencing. Here, we present a young girl with developmental delay, short stature despite a markedly advanced bone age, hypertrichosis without elbow hair, renal anomalies, and dysmorphic facial features, found to have a heterozygous, de novo, intragenic deletion encompassing exons 2-10 of the KMT2A (MLL) gene detected by whole exome sequencing. Heterozygous mutations in this gene were recently demonstrated to cause Wiedemann-Steiner syndrome (OMIM 605130).

View Article and Find Full Text PDF

Integrin receptors bind extracellular matrix proteins, and this link between the cell membrane and the surrounding matrix may translate skeletal loading to biologic activity in osteoprogenitor cells. The interaction between integrin and growth factor receptors allows for mechanically induced regulation of growth factor signaling. Skeletal unloading leads to decreased bone formation and osteoblast proliferation that can be explained in part by a failure of insulin-like growth factor 1 (IGF-1) to activate its signaling pathways in unloaded bone.

View Article and Find Full Text PDF

Unlabelled: We showed that IGF-I deficiency impaired osteoclastogenesis directly and/or indirectly by altering the interaction between stromal/osteoblastic cells and osteoclast precursors, reducing RANKL and M-CSF production. These changes lead to impaired bone resorption, resulting in high BV/TV in IGF-I null mice.

Introduction: Although IGF-I has been clearly identified as an important growth factor in regulating osteoblast function, information regarding its role in osteoclastogenesis is limited.

View Article and Find Full Text PDF