Clin Neurophysiol
April 2024
Corticospinal neurons located in motor areas of the cerebral neocortex project corticospinal axons which synapse with the spinal network; a parallel corticobulbar system projects to the cranial motor network and to brainstem motor pathways. The primate corticospinal system has a widespread cortical origin and an extensive range of different fibre diameters, including thick, fast-conducting axons. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand alpha motoneurons are a recent evolutionary feature, that is well developed in dexterous primates and particularly in humans.
View Article and Find Full Text PDFHigh-resolution anterograde tracers and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the rostral portion of the primary motor cortex (M1r) to spinal levels C5-T1. Most of this projection (90%) terminated contralaterally within laminae V-IX, with the densest distribution in lamina VII. Moderate bouton numbers occurred in laminae VI, VIII, and IX with few in lamina V.
View Article and Find Full Text PDFWe review the spatial organization of corticospinal outputs from different cortical areas and how this reflects the varied functions mediated by the corticospinal tract. A long-standing question is whether the primate corticospinal tract shows somatotopical organization. Although this has been clearly demonstrated for corticofugal outputs passing through the internal capsule and cerebral peduncle, there is accumulating evidence against somatotopy in the pyramidal tract in the lower brainstem and in the spinal course of the corticospinal tract.
View Article and Find Full Text PDFObjective: In some cases of incomplete cervical spinal cord injury (iSCI) there is marked paresis and dysfunction of upper-extremity movement but not lower-extremity movement. A continued explanation of such symptoms is a somatotopic organization of corticospinal tract (CST) fibers passing through the decussation at the craniovertebral junction (CVJ) and lateral CST (LCST). In central cord syndrome, it has been suggested that injury to the core of the cervical cord may include selective damage to medially located arm/hand LCST fibers, without compromising laterally located leg fibers.
View Article and Find Full Text PDFCustomarily the motor deficits that develop in ALS are considered in terms of muscle weakness. Functional rating scales used to assess ALS in terms of functional decline do not measure the deficits when performing complex motor tasks, that make up the human skilled motor repertoire, best exemplified by tasks requiring skilled hand and finger movement. This repertoire depends primarily upon the strength of direct corticomotoneuronal (CM) connectivity from primary motor cortex to the motor units subserving skilled movements.
View Article and Find Full Text PDFMany investigators who make extracellular recordings from populations of cortical neurons are now using spike shape parameters, and particularly spike duration, as a means of classifying different neuronal sub-types. Because of the nature of the experimental approach, particularly that involving nonhuman primates, it is very difficult to validate directly which spike characteristics belong to particular types of pyramidal neurons and interneurons, as defined by modern histological approaches. This commentary looks at the way antidromic identification of pyramidal cells projecting to different targets, and in particular, pyramidal tract neurons (PTN), can inform the utility of spike width classification.
View Article and Find Full Text PDFUpper motoneurons (UMNs) in motor areas of the cerebral cortex influence spinal and cranial motor mechanisms through the corticospinal tract (CST) and through projections to brainstem motor pathways. The primate corticospinal system has a diverse cortical origin and a wide spectrum of fibre diameters, including large diameter fibres which are unique to humans and other large primates. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand motoneurons are a late evolutionary feature only present in dexterous primates and best developed in humans.
View Article and Find Full Text PDFObjective: A recent neuroanatomical staging scheme of amyotrophic lateral sclerosis (ALS) indicates that a cortical lesion may spread, as a network disorder, both at the cortical level and via corticofugal tracts, including corticospinal projections providing direct monosynaptic input to α-motoneurons. These projections are involved preferentially and early in ALS. If these findings are clinically relevant, the pattern of paresis in ALS should primarily involve those muscle groups that receive the strongest direct corticomotoneuronal (CM) innervation.
View Article and Find Full Text PDFCooperative hand movements (e.g., opening a bottle) require a close coordination of the hands.
View Article and Find Full Text PDFWe review the current knowledge about the part that motor cortex plays in the preparation and generation of movement, and we discuss the idea that corticospinal neurons, and particularly those with cortico-motoneuronal connections, act as 'command' neurons for skilled reach-to-grasp movements in the primate. We also review the increasing evidence that it is active during processes such as action observation and motor imagery. This leads to a discussion about how movement is inhibited and stopped, and the role in these for disfacilitation of the corticospinal output.
View Article and Find Full Text PDFThe last few years have seen major advances in our understanding of the organisation and function of the corticospinal tract (CST). These have included studies highlighting important species-specific variations in the different functions mediated by the CST. In the primate, the most characteristic feature is direct cortico-motoneuronal (CM) control of muscles, particularly of hand and finger muscles.
View Article and Find Full Text PDFThis feature article focuses on the discrepancy between the distribution of axon diameters within the primate corticospinal tract, determined neuroanatomically, and the distribution of axonal conduction velocities within the same tract, determined electrophysiologically. We point out the importance of resolving this discrepancy for a complete understanding of corticospinal functions, and discuss the various explanations for the mismatch between anatomy and physiology.
View Article and Find Full Text PDFNeuroscience research in non-human primates (NHPs) has delivered fundamental knowledge about human brain function as well as some valuable therapies that have improved the lives of human patients with a variety of brain disorders. Research using NHPs, although it is facing serious challenges, continues to complement studies in human volunteers and patients, and will continue to be needed as the burdens of mental health problems and neurodegenerative diseases increase. At the same time, research into the 3Rs is helping to ameliorate the harms experienced by NHPs in experimental procedures, allowing the effective combination of optimal welfare conditions for the NHPs and high quality research.
View Article and Find Full Text PDFDrug Discov Today
September 2018
This Feature focuses on UK neuroscience research using nonhuman primates (NHPs), and the application of the 3Rs, in the light of the recent EU SCHEER report and subsequent article by Prescott et al. (2017). The challenge of understanding the human brain and its disorders means that NHP research is still very much needed, although it is essential that this research is complemented by studies using other approaches, such as human volunteers and patients, and other alternatives to NHP use.
View Article and Find Full Text PDFBackground: Variation in physiological deficits underlying upper limb paresis after stroke could influence how people recover and to which physical therapy they best respond.
Objectives: To determine whether functional strength training (FST) improves upper limb recovery more than movement performance therapy (MPT). To identify: (a) neural correlates of response and (b) whether pre-intervention neural characteristics predict response.
J Neurol Neurosurg Psychiatry
November 2017
The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS.
View Article and Find Full Text PDFThere are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes.
View Article and Find Full Text PDFMotor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp).
View Article and Find Full Text PDFThe 1967 paper from Hans Kuypers and Don Lawrence provided the first complete description of the projections from every major cortical area to the red nucleus and brainstem in the monkey. The study includes descriptions of some of the major cortical influences on sensory and motor circuits subserving vision, hearing and proprioception, as well as movements of the eyes, head and limbs. It also describes the detailed anatomy of the red nucleus in the monkey, and highlights species differences in this structure.
View Article and Find Full Text PDFThe activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter.
View Article and Find Full Text PDFThere is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFWe propose that amyotrophic lateral sclerosis (ALS), and frontotemporal dementia may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. We discuss how hand-arm function, locomotion, brainstem function (involving vocalization/speech, swallowing and breathing), and cognitive impairment share complex, interdependent evolutionary adaptations that can be traced back several million years. Fine movements of the hand facilitated tool-making and use enhanced by development of bipedalism.
View Article and Find Full Text PDFRationale: Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy.
Aims: To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy.
Design: Randomized, controlled, observer-blind trial.
The intra-cortical local field potential (LFP) reflects a variety of electrophysiological processes including synaptic inputs to neurons and their spiking activity. It is still a common assumption that removing high frequencies, often above 300 Hz, is sufficient to exclude spiking activity from LFP activity prior to analysis. Conclusions based on such supposedly spike-free LFPs can result in false interpretations of neurophysiological processes and erroneous correlations between LFPs and behaviour or spiking activity.
View Article and Find Full Text PDFThe responses of individual primate corticospinal neurons to localized electrical stimulation of primary motor (M1) and of ventral premotor cortex (area F5) are poorly documented. To rectify this and to study interactions between responses from these areas, we recorded corticospinal axons, identified by pyramidal tract stimulation, in the cervical spinal cord of three chloralose-anesthetized macaque monkeys. Single stimuli (≤400 μA) were delivered to the hand area of M1 or F5 through intracortical microwire arrays.
View Article and Find Full Text PDF