Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis.
View Article and Find Full Text PDFMany organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically induced apoptosis.
View Article and Find Full Text PDFOxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation-resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Understanding the complex interactions of protein posttranslational modifications (PTMs) represents a major challenge in metabolic engineering, synthetic biology, and the biomedical sciences. Here, we present a workflow that integrates multiplex automated genome editing (MAGE), genome-scale metabolic modeling, and atomistic molecular dynamics to study the effects of PTMs on metabolic enzymes and microbial fitness. This workflow incorporates complementary approaches across scientific disciplines; provides molecular insight into how PTMs influence cellular fitness during nutrient shifts; and demonstrates how mechanistic details of PTMs can be explored at different biological scales.
View Article and Find Full Text PDFMetabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels.
View Article and Find Full Text PDFBackground: The success of genome-scale models (GEMs) can be attributed to the high-quality, bottom-up reconstructions of metabolic, protein synthesis, and transcriptional regulatory networks on an organism-specific basis. Such reconstructions are biochemically, genetically, and genomically structured knowledge bases that can be converted into a mathematical format to enable a myriad of computational biological studies. In recent years, genome-scale reconstructions have been extended to include protein structural information, which has opened up new vistas in systems biology research and empowered applications in structural systems biology and systems pharmacology.
View Article and Find Full Text PDFStreptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays.
View Article and Find Full Text PDFCircadian oscillators are posttranslationally regulated and affect gene expression in autotrophic cyanobacteria. Oscillations are controlled by phosphorylation of the KaiC protein, which is modulated by the KaiA and KaiB proteins. However, it remains unclear how time information is transmitted to transcriptional output.
View Article and Find Full Text PDFBackground: The growing discipline of structural systems pharmacology is applied prospectively in this study to predict pharmacological outcomes of antibacterial compounds in Escherichia coli K12. This work builds upon previously established methods for structural prediction of ligand binding pockets on protein molecules and utilizes and expands upon the previously developed genome scale model of metabolism integrated with protein structures (GEM-PRO) for E. coli, structurally accounting for protein complexes.
View Article and Find Full Text PDFGrowth is a fundamental process of life. Growth requirements are well-characterized experimentally for many microbes; however, we lack a unified model for cellular growth. Such a model must be predictive of events at the molecular scale and capable of explaining the high-level behavior of the cell as a whole.
View Article and Find Full Text PDFGenome-scale network reconstruction has enabled predictive modeling of metabolism for many systems. Traditionally, protein structural information has not been represented in such reconstructions. Expansion of a genome-scale model of Escherichia coli metabolism by including experimental and predicted protein structures enabled the analysis of protein thermostability in a network context.
View Article and Find Full Text PDFEnzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain.
View Article and Find Full Text PDFMetabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels.
View Article and Find Full Text PDFRecent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico.
View Article and Find Full Text PDFAn approach for module identification, Modules of Networks (MoNet), introduced an intuitive module definition and clear detection method using edges ranked by the Girvan-Newman algorithm. Modules from a yeast network showed significant association with biological processes, indicating the method's utility; however, systematic bias leads to varied results across trials. MoNet modules also exclude some network regions.
View Article and Find Full Text PDFWith sequencing of thousands of organisms completed or in progress, there is a growing need to integrate gene prediction with metabolic network analysis. Using Chlamydomonas reinhardtii as a model, we describe a systems-level methodology bridging metabolic network reconstruction with experimental verification of enzyme encoding open reading frames. Our quantitative and predictive metabolic model and its associated cloned open reading frames provide useful resources for metabolic engineering.
View Article and Find Full Text PDF