The formation and reactivity of excited states and free radicals from primaquine, a drug used in the treatment of malaria, was studied in order to evaluate the primary photochemical reaction mechanisms. The excited primaquine triplet was not detected, but is likely to be formed with a short lifetime (<50 ns) and with a triplet energy <250 kJ/mol as the drug is an efficient quencher of the fenbufen triplet and the biphenyl triplet, and forms (1)O(2) by laser flash photolysis ((PQ)Phi(Delta)=0.025).
View Article and Find Full Text PDFThe real-time uptake of serotonin, a neurotransmitter, by rat leukemia mast cell line RBL-2H3 and 5-hydroxytryptophan by Chinese hamster V79 cells has been studied by fluorescence lifetime imaging microscopy (FLIM), monitoring ultraviolet (340 nm) fluorescence induced by two-photon subpicosecond 630 nm excitation. Comparison with two-photon excitation with 590 nm photons or by three-photon excitation at 740 nm shows that the use of 630 nm excitation provides optimal signal intensity and lowered background from auto-fluorescence of other cellular components. In intact cells, we observe using FLIM three distinct fluorescence lifetimes of serotonin and 5-hydroxytryptophan according to location.
View Article and Find Full Text PDF