Publications by authors named "Roger G Hiller"

In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αβ protomer where the α and β subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the β subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families.

View Article and Find Full Text PDF

Solar light harvesting begins with electronic energy transfer in structurally complex light-harvesting antennae such as the peridinin chlorophyll- protein from dinoflagellate algae. Peridinin chlorophyll- protein is composed of a unique combination of chlorophylls sensitized by carotenoids in a 4:1 ratio, and ultrafast spectroscopic methods have previously been utilized in elucidating their energy-transfer pathways and timescales. However, due to overlapping signals from various chromophores and competing pathways and timescales, a consistent model of intraprotein electronic energy transfer has been elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Time-resolved multi-pulse methods were used to study the dynamics, couplings, and energy transfer pathways between light-harvesting pigments in the peridinin-chlorophyll a-protein (PCP) complex.
  • The research involved exciting the complex with a short pulse to analyze how energy transitions from peridinin to chlorophylls through various states and how these states influence each other.
  • Findings reveal that the S and ICT states of peridinin exist in a distinct equilibrium and that the main pathway for energy transfer is from the intramolecular charge transfer (ICT) state to chlorophyll a (Chl-a).
View Article and Find Full Text PDF

By means of one- and two-dimensional transient infrared spectroscopy and femtosecond stimulated Raman spectroscopy, we investigated the excited state dynamics of peridinin, a carbonyl carotenoid occurring in natural light harvesting complexes. The presence of singly and doubly excited states, as well as of an intramolecular charge transfer (ICT) state, makes the behavior of carbonyl carotenoids in the excited state very complex. In this work, we investigated by time resolved spectroscopy the relaxation of photo-excited peridinin in solvents of different polarities and as a function of the excitation wavelength.

View Article and Find Full Text PDF

The structures and environments of the protein-bound peridinins (Pers) and chlorophylls (Chls) a/c2 in the membrane-intrinsic major light-harvesting complex of the dinoflagellate Amphidinium carterae (LHCAmph) are characterised using resonance Raman (RR) spectroscopy with 11 excitation wavelengths, at 77K. The excitation-dependent variation in the CC stretching mode (ν1) suggests the presence of three Pers with conjugation lengths over 8 double bonds (dBs), and one diadinoxanthin, between 413.7 and 528.

View Article and Find Full Text PDF

Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species.

View Article and Find Full Text PDF

Peridinin-chlorophyll-protein (PCP) complexes, where the N-terminal domain of native PCP from Amphidinium carterae has been reconstituted with different chlorophyll (Chl) species, have been investigated by time-resolved EPR in order to elucidate the details of the triplet-triplet energy transfer (TTET) mechanism. This spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognizable spin-polarization effects in the observed time-resolved EPR spectra. The spin polarization produced at the acceptor site (peridinin) depends on the initial polarization of the donor (chlorophyll) and on the relative geometric arrangement of the donor-acceptor spin axes.

View Article and Find Full Text PDF

The peridinin chlorophyll-a protein (PCP) is a water-soluble, trimeric light harvesting complex found in marine dinoflagellates that binds peridinin and Chl-a in an unusual stoichiometric ratio of 4:1. In this paper, the pathways of excited-state energy transfer and relaxation in PCP were identified by means of femtosecond visible-pump, mid-infrared probe spectroscopy. In addition, excited-state relaxation of peridinin dissolved in organic solvent (CHCl(3) and MeOH) was investigated.

View Article and Find Full Text PDF

The peridinin-chlorophyll a-protein (PCP) from dinoflagellates is a soluble light harvesting antenna which gathers incoming photons mainly by the carotenoid peridinin. In PCPs reconstituted with different chlorophylls, the peridinin to chlorophyll energy transfer rates are well predicted by a Förster-like theory, but only if the pigment arrangements are identical in all PCPs. We have determined the X-ray structures of PCPs reconstituted with Chlorophyll-b (Chl-b), Chlorophyll-d (Chl-d) and Bacteriochlorophyll-a (BChl-a) to resolutions View Article and Find Full Text PDF

The peridinin-chlorophyll a-protein (PCP) of dinoflagellates is unique among the large variety of natural photosynthetic light-harvesting systems. In contrast to other chlorophyll protein complexes, the soluble PCP is located in the thylakoid lumen, and the carotenoid pigments outnumber the chlorophylls. The structure of the PCP complex consists of two symmetric domains, each with a central chlorophyll a (Chl-a) surrounded by four peridinin molecules.

View Article and Find Full Text PDF

Light-harvesting complexes have evolved into very different structures but fulfill the same function, efficient harvesting of solar energy. In these complexes, pigments are fine-tuned and properly arranged to gather incoming photons. In the photosynthetic dinoflagellate Amphidinium carterae, two variants of the soluble light-harvesting complex PCP have been found [main form PCP (MFPCP) and high-salt PCP (HSPCP)], which show small variations in their pigment arrangement and tuning mechanisms.

View Article and Find Full Text PDF

The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation.

View Article and Find Full Text PDF

We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species.

View Article and Find Full Text PDF

The dinoflagellate chloroplast genome is fragmented into a number of plasmid-like minicircles, mostly containing one or more genes, and with a conserved core. We show here that, in addition to the transcripts of similar sizes to individual genes that have been reported previously, there are larger transcripts beginning and ending close to the core region. These may give rise to the smaller transcripts by processing.

View Article and Find Full Text PDF

We combine ensemble and single-molecule spectroscopy to gain insight into the energy transfer between chlorophylls (Chls) in peridinin-chlorophyll-protein (PCP) complexes reconstituted with Chl a, Chl b, as well as both Chl a and Chl b. The main focus is the heterochlorophyllous system (Chl a/b-N-PCP), and reference information essential to interpret experimental observations is obtained from homochlorophyllous complexes. Energy transfer between Chls in Chl a/b-N-PCP takes place from Chl b to Chl a and also from Chl a to Chl b with comparable Förster energy transfer rates of 0.

View Article and Find Full Text PDF

Low temperature, steady-state, optical spectroscopic methods were used to study the spectral features of peridinin-chlorophyll-protein (PCP) complexes in which recombinant apoprotein has been refolded in the presence of peridinin and either chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll d (Chl d), 3-acetyl-chlorophyll a (3-acetyl-Chl a) or bacteriochlorophyll a (BChl a). Absorption spectra taken at 10 K provide better resolution of the spectroscopic bands than seen at room temperature and reveal specific pigment-protein interactions responsible for the positions of the Qy bands of the chlorophylls. The study reveals that the functional groups attached to Ring I of the two protein-bound chlorophylls modulate the Qy and Soret transition energies.

View Article and Find Full Text PDF

Background: Peridinin-containing dinoflagellates have a highly reduced chloroplast genome, which is unlike that found in other chloroplast containing organisms. Genome reduction appears to be the result of extensive transfer of genes to the nuclear genome. Unusually the genes believed to be remaining in the chloroplast genome are found on small DNA 'minicircles'.

View Article and Find Full Text PDF

Steady-state and femtosecond time-resolved optical methods have been used to compare the spectroscopic features and energy transfer dynamics of two systematically different light-harvesting complexes from the dinoflagellate Amphidinium carterae: main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a-proteins. Pigment analysis and X-ray diffraction structure determinations [Hofmann, E., Wrench, P.

View Article and Find Full Text PDF

An important component of the photosynthetic apparatus is a light-harvesting system that captures light energy and transfers it efficiently to the reaction center. Depending on environmental conditions, photosynthetic antennae have adopted various strategies for this function. Peridinin-chlorophyll-a protein (PCP) represents a unique situation because, unlike other antenna systems which have a preponderance of chlorophyll, it has the carotenoid, peridinin, as its major pigment.

View Article and Find Full Text PDF

Peridinin, the carotenoid in the peridinin chlorophyll a protein (PCP), was studied by Stark (electroabsorption) spectroscopy to determine the change in electrostatic properties produced on excitation within the absorption band, in methyl tetrahydrofuran (MeTHF) versus ethylene glycol (EG), at 77 K. Strikingly, a large change in the permanent dipole moment (|Deltamu|) was found between the ground state, S(0) (1(1)A(g)(-)), and the Franck-Condon region of the S(2) (1(1)B(u)(+)) excited state, in both MeTHF (22 D) and EG (approximately 27 D), thus revealing the previously unknown charge transfer (CT) character of this pi-pi transition in peridinin. Such a large |Deltamu| produced on excitation, we suggest, facilitates the bending of the lactone moiety, toward which charge transfer occurs, and the subsequent formation of the previously identified intramolecular CT (ICT) state at lower energy.

View Article and Find Full Text PDF

Carbonyl carotenoids are important constituents of the antenna complexes of marine organisms. These carotenoids possess an excited state with a charge-transfer character (intramolecular charge transfer state, ICT), but many details of the carotenoid to chlorophyll energy transfer mechanisms are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the intrinsic light-harvesting complex (LHC) of dinoflagellates, which contains the carbonyl carotenoid peridinin.

View Article and Find Full Text PDF

Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states.

View Article and Find Full Text PDF

Peridinin-chlorophyll a-protein (PCP) is a unique antenna complex in dinoflagellates that employs peridinin (a carotenoid) as its main light-harvesting pigment. Strong excitonic interactions between peridinins, as well as between peridinins and chlorophylls (Chls) a, can be expected from the short intermolecular distances revealed by the crystal structure. Different experimental approaches of nonlinear polarization spectroscopy in the frequency domain (NLPF) were used to investigate the various interactions between pigments in PCP of Amphidinium carterae at room temperature.

View Article and Find Full Text PDF

The coding regions for the N-domain, and full length peridinin-chlorophyll a apoprotein (full length PCP), were expressed in Escherichia coli. The apoproteins formed inclusion bodies from which the peptides could be released by hot buffer. Both the above constructs were reconstituted by addition of a total pigment extract from native PCP.

View Article and Find Full Text PDF

In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex.

View Article and Find Full Text PDF