The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF).
View Article and Find Full Text PDFDecades of studying isothermal and temperature-dependent mass and charge transport in polar organic liquids and electrolytes have resulted in two mutually incompatible models and the failure to develop a general molecular level picture. The hydrodynamic model describes conductivity, diffusion, and dielectric relaxation in terms of viscosity, while the inadequacy of the thermal activation model leads to empirical descriptions and fitting procedures whose adjustable parameters have little or no physical significance. We recently demonstrated that transport data can be characterized with a high degree of accuracy and self-consistency using the compensated Arrhenius formalism (CAF), where the transport property of interest assumes an Arrhenius-like form that also includes a dielectric constant dependence in the exponential prefactor.
View Article and Find Full Text PDFTemperature-dependent transport properties in ionic liquids, such as the ionic conductivity and fluidity, are often characterized empirically through equations that require multiple adjustable fitting parameters in order to adequately describe the data. These fitting parameters offer no insight into the molecular-level mechanism of transport. Here the temperature dependence of these transport properties in 1-alkyl-3-methylimidazolium triflate ionic liquids is explained using the compensated Arrhenius formalism (CAF), where the conductivity or fluidity assumes an Arrhenius-like form that also contains a dipole density dependence in the exponential prefactor.
View Article and Find Full Text PDFThe dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation.
View Article and Find Full Text PDFThe compensated Arrhenius formalism (CAF) is applied to conductivity and diffusion data for a family of cyclic carbonates composed of octylene carbonate, decylene carbonate, undecylene carbonate, and dodecylene carbonate. The strong intermolecular interactions in these liquids lead to diffusion activation energies that are higher than those for typical aprotic solvents. The conductivity results show that activation energies are similar between TbaTf and LiTf cyclic carbonate electrolytes.
View Article and Find Full Text PDFSelf-diffusion coefficient measurements were performed for pure -alkyl ketone liquids using the pulsed field gradient NMR spin-echo technique. Ionic conductivities and dielectric constants of 0.0055 mol·L tetrabutylammonium trifluoromethanesulfonate in 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone were also measured.
View Article and Find Full Text PDFThe molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent.
View Article and Find Full Text PDFThe temperature dependence of viscosity (the reciprocal of fluidity) in polar liquids has been studied for over a century, but the available theoretical models have serious limitations. Consequently, the viscosity is often described with empirical equations using adjustable fitting parameters that offer no insight into the molecular mechanism of transport. We have previously reported a novel approach called the compensated Arrhenius formalism (CAF) to describe ionic conductivity, self-diffusion, and dielectric relaxation in terms of molecular and system properties.
View Article and Find Full Text PDFTemperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data.
View Article and Find Full Text PDFOnsager's model of the dielectric constant is used to provide a molecular-level picture of how the dielectric constant affects mass and charge transport in organic liquids and organic liquid electrolytes. Specifically, the molecular and system parameters governing transport are the molecular dipole moment μ and the solvent dipole density N. The compensated Arrhenius formalism (CAF) writes the temperature-dependent ionic conductivity or diffusion coefficient as an Arrhenius-like expression that also includes a static dielectric constant (ε(s)) dependence in the exponential prefactor.
View Article and Find Full Text PDFThe temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation.
View Article and Find Full Text PDFConductivities and static dielectric constants for 0.0055 M tetrabutylammonium trifluoromethanesulfonate in n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-octyl acetate, and n-decyl acetate have been collected over the temperature range of 0-80 °C. Self-diffusion coefficients and static dielectric constants of pure acetates were obtained over the same temperature range.
View Article and Find Full Text PDFThe technologically important properties of room temperature ionic liquids (RTILs) are fundamentally linked to the ion-ion interactions present among the constituent ions. These ion-ion interactions in one RTIL (1-ethyl-3-methylimidazolium trifluoromethanesulfonate, [C(2)mim]CF(3)SO(3)) are characterized with transmission FTIR spectroscopy and polarized attenuated total reflection (ATR) FTIR spectroscopy. A quasilattice model is determined to be the best framework for understanding the ionic interactions.
View Article and Find Full Text PDFSelf-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a).
View Article and Find Full Text PDFJ Phys Chem B
December 2009
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor.
View Article and Find Full Text PDFThe NH(2)(+) stretching modes of secondary amine salts have been previously studied, but the band assignments are inconsistent between the various studies. This paper assigns characteristic NH(2)(+) group frequencies between approximately 2500 and 2400 cm(-1). Crystal structures of four diamine salts are reported here.
View Article and Find Full Text PDFIon-ion and hydrogen-bonding interactions in solutions of 1-ethyl-3-methylimidazolium trifluoromethansulfonate ([C(2)mim]Tf) and triflic acid (HTf) are investigated with infrared and Raman spectroscopy. Bands indicative of highly aggregated triflate anions appear in the vibrational spectra of solutions containing a large fraction of triflic acid. These species most likely consist of triflate anions that are at least threefold coordinated by positive ions (i.
View Article and Find Full Text PDFJ Phys Chem B
April 2009
The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor.
View Article and Find Full Text PDFIon transport is studied in dilute organic liquid electrolyte solutions in which close cation-anion interactions are minimized either through steric hindrance imposed by the bulky tetrabutylammonium cation or by strong solvation of alkali metal cations by DMSO or 1-propanol. In these solutions, the molar conductivity does not appear to depend on either the solvent viscosity or the size of the solvated charge carrier in a manner consistent with Walden's rule. The molar conductivities plotted as a function of the solvent dielectric constant from epsilon = 5.
View Article and Find Full Text PDFAn important step in developing ionic-liquid-based electrolytes for lithium rechargeable batteries is obtaining a molecular-level understanding of the ionic interactions that occur in these systems. In this study, 1-ethyl-3-methylimidazolium trifluoromethansulfonate ([C2mim]CF3SO3) is complexed with LiCF3SO3, and the local structures of the CF3SO3- and [C2mim]+ ions are investigated with infrared and Raman spectroscopy. The isolation and subsequent refinement of a Li[C2mim](CF3SO3)2 crystal provides further insight into the structure of the [C2mim]CF3SO3-LiCF3SO3 solutions.
View Article and Find Full Text PDFRaman and infrared spectroscopy were used to investigate hydrogen-bonding interactions and cation coordination effects in solutions of lithium triflate (LiCF3SO3) dissolved in two primary amines, hexylamine (HEXA) and N,N-dimethylethylenediamine (DMEDA), and in a secondary amine, dipropylamine (DPA). Strong intermolecular hydrogen-bonding interactions and weaker intramolecular hydrogen-bonding interactions that occur only in DMEDA were spectroscopically distinguished in a comparison of pure HEXA, pure DMEDA, and the dilute solutions of these amines in CCl4. The spectroscopic shifts in intensity and frequency in the NH stretching region of DPA and DPA diluted in CCl4 were similar to those of HEXA.
View Article and Find Full Text PDFIonic mobility, the thermodynamics of ionic association, and the structure of associated species are studied in solutions of diglyme containing either lithium triflate or tetrabutylammonium triflate. Infrared spectroscopic, PFG NMR, thermodynamic, and crystallographic data suggest that the solute species existing in diglyme-lithium triflate are "free" ions, contact ion pairs, and dimers. Equilibrium constants, S(o), deltaH(o), and deltaG(o) are calculated for processes occurring between these species.
View Article and Find Full Text PDFInfrared and Raman spectroscopy were used to study hydrogen-bonding interactions and the cation coordination effect in solutions of N,N-dimethylethylenediamine (DMEDA) with lithium triflate (LiTf) and sodium triflate (NaTf). A comparison of pure DMEDA with DMEDA dissolved in carbon tetrachloride enabled the separation of the relative contributions of intermolecular and intramolecular hydrogen-bonding interactions to the N-H stretching frequencies. The addition of LiTf and NaTf to DMEDA shifts the N-H stretching frequencies through two competing effects: the cation coordination effect lowers the frequencies, while the disruption of the hydrogen-bonding interactions increases the frequencies.
View Article and Find Full Text PDFRaman and infrared spectroscopy were used to study the nature of hydrogen bonding and the cation inductive effect in solutions of LiCF(3)SO(3) dissolved in hexylamine, a primary amine, and dipropylamine, a secondary amine. Comparison of pure hexylamine and hexylamine dissolved in CCl(4) established that the Raman band maximum of the symmetric stretching mode, nu(s)(NH(2)), in pure hexylamine originates in molecules undergoing no hydrogen bonding interactions. The addition of LiCF(3)SO(3) to hexylamine or dipropylamine shifts the frequencies of the solvent NH stretching modes by two effects: the breaking of hydrogen bonds and the cation inductive effect.
View Article and Find Full Text PDFIonic association in nonaqueous electrolytes containing LiPF6 was investigated with infrared absorption spectroscopy. The spectral intensity of the nondegenerate nu1 mode of the PF6- anion was found to be sensitive to ion pairing. Although the nu(1) mode of an isolated PF6- anion is only Raman active, coordination of Li+ to PF6- destroys the octahedral symmetry of the anion and results in nu1 becoming simultaneously IR and Raman active.
View Article and Find Full Text PDF