Publications by authors named "Roger Finlay"

Article Synopsis
  • The oxalate-carbonate pathway (OCP) involves converting soil oxalate into stable carbonates, but a better understanding of the process is essential for effective management.
  • A bacteria strain, Azospirillum sp. OX-1, was studied for its ability to degrade calcium oxalate, revealing that it not only transforms it into calcium carbonate but also produces methane as a byproduct.
  • Proteomic analysis indicated that OX-1 utilizes specific enzymes for oxalate degradation and that methane production may be more common in other soil bacteria, prompting a reassessment of OCP's effectiveness in carbon reduction strategies.
View Article and Find Full Text PDF

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils.

View Article and Find Full Text PDF

Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using CO pulse labelling, patterns of naturally occurring stable isotopes (Mg and N) and high-throughput DNA sequencing of fungal amplicons.

View Article and Find Full Text PDF

Microbial mineralization is increasingly used in bioremediation of heavy metal pollution, but better mechanistic understanding of the processes involved and how they are regulated are required to improve the practical application of microorganisms in bioremediation. We used a combination of morphological (TEM) and analytical (XRD, XPS, FTIR) methods, together with novel proteomic analyses, to investigate the detoxification mechanisms, used by a range of bacteria, including the strains Bacillus velezensis LB002, Escherichia coli DH5α, B. subtilis 168, Pseudomonas putida KT2440, and B.

View Article and Find Full Text PDF

Tundra ecosystems are global belowground sinks for atmospheric CO . Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C-N dynamics across a subarctic-alpine forest-heath vegetation gradient.

View Article and Find Full Text PDF

Nitrogen (N) fertilization is a routine practice in boreal forests but its effects on fungal functional guilds in Pinus sylvestris forests are still incompletely understood. Sampling is often restricted to the upper organic horizons and based on DNA extracted from mixtures of soil and roots without explicitly analysing different spatial niches. Fungal community structure in soil and roots of an 85-y-old Pinus sylvestris forest was investigated using high throughput sequencing.

View Article and Find Full Text PDF

In boreal systems, soil profiles typically consist of distinct stratified horizons, with organic layers at the surface overlying deeper mineral horizons providing microhabitat variation along a depth gradient, and vertical stratification of fungal communities along such soil profiles is commonly observed. We studied fungal community structure in a coastal pine forest along a gradient of decreasing influence from the coast. In this system, the vertical stratification pattern of soil microhabitats (defined here as organic, mineral with roots and mineral without roots: O, MR and MN, respectively) is non-uniform; organic horizons are sometimes buried under drifting sand dunes.

View Article and Find Full Text PDF

Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR.

View Article and Find Full Text PDF

Symbiotic ectomycorrhizal fungi have received increasing attention as regulators of below-ground organic matter storage. They are proposed to promote organic matter accumulation by suppressing saprotrophs, but have also been suggested to play an active role in decomposition themselves. Here we show that exclusion of tree roots and associated ectomycorrhizal fungi in a boreal forest increased decomposition of surface litter by 11% by alleviating nitrogen limitation of saprotrophs-a "Gadgil effect".

View Article and Find Full Text PDF

The Fungal Kingdom is responsible for many ecosystem services as well as many industrial and agricultural products. Nevertheless, how these fungal species function and carry out these services is dependent on their capacity to grow under different stress conditions caused by a variety of abiotic factors such as ionizing radiation, UV radiation, extremes of temperature, acidity and alkalinity, and environments of low nutritional status, low water activity, or polluted with, e.g.

View Article and Find Full Text PDF

The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás.

View Article and Find Full Text PDF

Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities.

View Article and Find Full Text PDF

RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following CO labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. , , , , , , and were the most active bacterial phyla in the rhizosphere soil.

View Article and Find Full Text PDF

Ectomycorrhizal (ECM) symbioses have evolved a minimum of 78 times independently from saprotrophic lineages, indicating the potential for functional overlap between ECM and saprotrophic fungi. ECM fungi have the capacity to decompose organic matter, and although there is increasing evidence that some saprotrophic fungi exhibit the capacity to enter into facultative biotrophic relationships with plant roots without causing disease symptoms, this subject is still not well studied. In order to determine the extent of biotrophic capacity in saprotrophic wood-decay fungi and which systems may be useful models, we investigated the colonization of conifer seedling roots in vitro using an array of 201 basidiomycete wood-decay fungi.

View Article and Find Full Text PDF

In boreal forest soils, ectomycorrhizal fungi are fundamentally important for carbon (C) dynamics and nutrient cycling. Although their extraradical mycelium (ERM) is pivotal for processes such as soil organic matter build-up and nitrogen cycling, very little is known about its dynamics and regulation. In this study, we quantified ERM production and turnover, and examined how these two processes together regulated standing ERM biomass in seven sites forming a chronosequence of 12- to 100-yr-old managed Pinus sylvestris forests.

View Article and Find Full Text PDF

Symbiotic ectomycorrhizal fungi mobilize nutrients from both organic and inorganic substrates and supply them to their host plants. Their role in mobilizing base cations and phosphorus from mineral substrates through weathering has received increasing attention in recent years but the processes involved remain to be elucidated. We grew selected ectomycorrhizal and nonmycorrhizal fungi in axenic systems containing mineral and organic substrates and examined their capacity to fractionate and assimilate stable isotopes of magnesium.

View Article and Find Full Text PDF

Symbiotic ectomycorrhizal tree roots represent an important niche for interaction with bacteria since the fungi colonizing them have a large surface area and receive a direct supply of photosynthetically derived carbon. We examined individual root tips of Pinus sylvestris at defined time points between 5 days and 24 weeks, identified the dominant fungi colonizing each root tip using Sanger sequencing and the bacterial communities colonizing individual root tips by 454 pyrosequencing. Bacterial colonization was extremely dynamic with statistically significant variation in time and increasing species richness until week 16 (3477 operational taxonomic units).

View Article and Find Full Text PDF

Background: Improved understanding of bacterial-fungal interactions in the rhizosphere should assist in the successful application of bacteria as biological control agents against fungal pathogens of plants, providing alternatives to chemicals in sustainable agriculture. Rhizoctonia solani is an important soil-associated fungal pathogen and its chemical treatment is not feasible or economic. The genomes of the plant-associated bacteria Serratia proteamaculans S4 and Serratia plymuthica AS13 have been sequenced, revealing genetic traits that may explain their diverse plant growth promoting activities and antagonistic interactions with R.

View Article and Find Full Text PDF

There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems.

View Article and Find Full Text PDF

Fungi play central roles in many biological processes, influencing soil fertility, decomposition, cycling of minerals, and organic matter, plant health, and nutrition. They produce a wide spectrum of molecules, which are exploited in a range of industrial processes to manufacture foods, food preservatives, flavoring agents, and other useful biological products. Fungi can also be used as biological control agents of microbial pathogens, nematodes or insect pests, and affect plant growth, stress tolerance, and nutrient acquisition.

View Article and Find Full Text PDF

Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration.

View Article and Find Full Text PDF

Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap.

View Article and Find Full Text PDF

Rhizobacteria with biocontrol ability exploit a range of mechanisms to compete successfully with other microorganisms and to ensure their growth and survival in the rhizosphere, ultimately promoting plant growth. The rhizobacterium Serratia plymuthica AS13 is able to promote oilseed rape growth and improve seedling survival in the presence of the fungal pathogen, Rhizoctonia solani AG 2-1; however, our understanding of the mechanisms underlying the antagonism of Serratia is limited. To elucidate possible mechanisms, genome-wide gene expression profiling of S.

View Article and Find Full Text PDF

Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition.

View Article and Find Full Text PDF

Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond18vknqgahbp40shh7jk904mnsi36cs3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once