B-cell maturation antigen (BCMA) is expressed on normal and malignant plasma cells and represents a potential target for therapeutic intervention. BCMA binds to two ligands that promote tumor cell survival, a proliferation inducing ligand (APRIL) and B-cell activating factor. To selectively target BCMA for plasma cell malignancies, we developed antibodies with ligand blocking activity that could promote cytotoxicity of multiple myeloma (MM) cell lines as naked antibodies or as antibody-drug conjugates.
View Article and Find Full Text PDFThe chimeric anti-CD30 monoclonal antibody cAC10, linked to the antimitotic agents monomethyl auristatin E (MMAE) or F (MMAF), produces potent and highly CD30-selective anti-tumor activity in vitro and in vivo. These drugs are appended via a valine-citrulline (vc) dipeptide linkage designed for high stability in serum and conditional cleavage and putative release of fully active drugs by lysosomal cathepsins. To characterize the biochemical processes leading to effective drug delivery, we examined the intracellular trafficking, internalization, and metabolism of the parent antibody and two antibody-drug conjugates, cAC10vc-MMAE and cAC10vc-MMAF, following CD30 surface antigen interaction with target cells.
View Article and Find Full Text PDFWe have previously shown that antibody-drug conjugates (ADCs) consisting of cAC10 (anti-CD30) linked to the antimitotic agent monomethylauristatin E (MMAE) lead to potent in vitro and in vivo activities against antigen positive tumor models. MMAF is a new antimitotic auristatin derivative with a charged C-terminal phenylalanine residue that attenuates its cytotoxic activity compared to its uncharged counterpart, MMAE, most likely due to impaired intracellular access. In vitro cytotoxicity studies indicated that mAb-maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-MMAF (mAb-L1-MMAF) conjugates were >2200-fold more potent than free MMAF on a large panel of CD30 positive hematologic cell lines.
View Article and Find Full Text PDFPurpose: An antibody-drug conjugate consisting of monomethyl auristatin E (MMAE) conjugated to the anti-CD30 monoclonal antibody (mAb) cAC10, with eight drug moieties per mAb, was previously shown to have potent cytotoxic activity against CD30(+) malignant cells. To determine the effect of drug loading on antibody-drug conjugate therapeutic potential, we assessed cAC10 antibody-drug conjugates containing different drug-mAb ratios in vitro and in vivo.
Experimental Design: Coupling MMAE to the cysteines that comprise the interchain disulfides of cAC10 created an antibody-drug conjugate population, which was purified using hydrophobic interaction chromatography to yield antibody-drug conjugates with two, four, and eight drugs per antibody (E2, E4, and E8, respectively).