Cell Physiol Biochem
August 2007
Background: SPAK (Ste20p-related proline alanine-rich kinase) phosphorylates and activates NKCC1 (Na-K-2Cl cotransporter) in the presence of another serine/threonine kinase WNK4 (With No lysine (K)). However, whether or not the docking of SPAK to NKCC1 is a requirement for cotransporter activation has not been fully resolved.
Methods: We mutated both SPAK binding motifs in the amino-terminal tail of NKCC1 and tested the interaction between SPAK and NKCC1 using a semi in vivo yeast two-hybrid assay, (32)P-ATP in vitro phosphorylation assays, and (86)Rb(+) uptake (a K(+) congener) assays in heterologously expressed Xenopus laevis oocytes.
Billions of pounds are being spent on the fight against AIDS in developing countries. believes that much of the money could be better used elsewhere, whereas argue that current spending is not enough
View Article and Find Full Text PDFPrevious work from our laboratory and others has established that Ste-20-related proline-alanine-rich kinase (SPAK/PASK) is central to the regulation of NKCC1 function. With no lysine (K) kinase (WNK4) has also been implicated in the regulation of NKCC1 activity through upstream activation of SPAK. Because previous studies from our laboratory also demonstrated a protein-protein interaction between SPAK and apoptosis-associated tyrosine kinase (AATYK), we explore here the possibility that AATYK is another component of the regulation of NKCC1.
View Article and Find Full Text PDFOur recent studies demonstrate that SPAK (Ste20p-related Proline Alanine-rich Kinase), in combination with WNK4 [With No lysine (K) kinase], phosphorylates and stimulates the Na-K-2Cl cotransporter (NKCC1), whereas catalytically inactive SPAK (K104R) fails to activate the cotransporter. The catalytic domain of SPAK contains an activation loop between the well-conserved DFG and APE motifs. We speculated that four threonine residues (T231, T236, T243, and T247) in the activation loop might be sites of phosphorylation and kinase activation; therefore, we mutated each residue into an alanine.
View Article and Find Full Text PDFIn the present study, we have demonstrated functional interaction between Ste20-related proline-alanine-rich kinase (SPAK), WNK4 [with no lysine (K)], and the widely expressed Na+-K+-2Cl- cotransporter type 1 (NKCC1). NKCC1 function, which we measured in Xenopus laevis oocytes under both isosmotic (basal) and hyperosmotic (stimulated) conditions, was unaffected when SPAK and WNK4 were expressed alone. In contrast, expression of both kinases with NKCC1 resulted in a significant increase in cotransporter activity and an insensitivity to external osmolarity or cell volume.
View Article and Find Full Text PDFActivity of heterologously expressed NKCC1 was analyzed under basal and activated conditions in the presence and absence of binding of Ste20-related proline-alanine-rich kinase (SPAK). Mutant NKCC1 that lacks the ability to bind to this kinase showed K+ transport function identical to wild-type NKCC1. Thus, preventing the binding of the kinase to the cotransporter does not affect cotransporter function.
View Article and Find Full Text PDFPeripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q.
View Article and Find Full Text PDFFour genes encode electroneutral, Na+-independent, K-Cl cotransporters. KCC2, is exclusively expressed in neurons where it is thought to drive intracellular Cl- to low concentrations and shift the reversal potential for Cl- conductances such as GABA(A) or glycine receptor channels, thus participating in the postnatal development of inhibitory mechanisms in the brain. Indeed, expression of the cotransporter is low at birth and increases postnatally, at a time when the intracellular Cl- concentration in neurons decreases and gamma-aminobutyric acid switches its effect from excitatory to inhibitory.
View Article and Find Full Text PDF