Publications by authors named "Roger Dinallo"

Article Synopsis
  • Refining assumptions about the fraction absorbed (Fabs) can enhance the performance of pharmacokinetic models that use in vitro-to-in vivo extrapolation (IVIVE) methods for predicting oral bioavailability (Fbio) of chemicals.
  • In this study, over 400 non-pharmaceuticals were tested for apparent permeability (Papp) using the Caco-2 cell line, leading to the development of a random forest quantitative structure-property relationship (QSPR) model which improved predictions of human bioavailability compared to rat data.
  • The findings were integrated into a high throughput toxicokinetics (HTTK) framework to estimate equivalent doses for bioactivity based on in vitro data, resulting in only minor changes to exposure and bioactivity
View Article and Find Full Text PDF

High(er) throughput toxicokinetics (HTTK) encompasses in vitro measures of key determinants of chemical toxicokinetics and reverse dosimetry approaches for in vitro-in vivo extrapolation (IVIVE). With HTTK, the bioactivity identified by any in vitro assay can be converted to human equivalent doses and compared with chemical intake estimates. Biological variability in HTTK has been previously considered, but the relative impact of measurement uncertainty has not.

View Article and Find Full Text PDF

Synthesis and structure-activity relationship (SAR) of a series of alkyl and cycloalkyl containing non-steroidal dissociated glucocorticoid receptor (GR) agonists is reported. This series of compounds was identified as part of an effort to replace the CF3 group in a scaffold represented by 1a. The study culminated in the identification of compound 14, a t-butyl containing derivative, which has shown potent activity for GR, selectivity against the progesterone receptor (PR) and the mineralocorticoid receptor (MR), in vitro anti-inflammatory activity in an IL-6 transrepression assay, and dissociation in a MMTV transactivation counter-screen.

View Article and Find Full Text PDF

Synthesis and structure-activity relationship (SAR) of a series of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain "diazaindole" moieties and display different transcriptional regulatory profiles in vitro and are considered "dissociated" between gene transrepression and transactivation. The lead optimization effort described in this article focused in particular on limiting the transactivation of genes which result in bone side effects and these were assessed in vitro in MG-63 osteosarcoma cells, leading to the identification of (R)-18 and (R)-21.

View Article and Find Full Text PDF

Bile acids (BAs) and BA receptors, including G protein-coupled bile acid receptor 1 (GPBAR1), represent novel targets for the treatment of metabolic and inflammatory disorders. However, BAs elicit myriad effects on cardiovascular function, although this has not been specifically ascribed to GPBAR1. This study was designed to test whether stimulation of GPBAR1 elicits effects on cardiovascular function that are mechanism based that can be identified in acute ex vivo and in vivo cardiovascular models, to delineate whether effects were due to pathways known to be modulated by BAs, and to establish whether a therapeutic window between in vivo cardiovascular liabilities and on-target efficacy could be defined.

View Article and Find Full Text PDF

Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1P(X) receptor agonist) produces modest hypertension in patients (2-3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.

View Article and Find Full Text PDF

The strategic integration of in vivo cardiovascular models is important during lead optimization to enable a wide therapeutic index for cardiovascular safety. However, under what conditions (eg, species, route of administration, anesthesia) studies should be performed to drive go/no-go is open to interpretation. Two compounds, torcetrapib and a novel steroid hormone mimetic (SHM-1121X), both with off-target cardiovascular liabilities, were profiled in 4 in vivo cardiovascular models.

View Article and Find Full Text PDF

We previously reported the discovery of a novel ribosomal S6 kinase 2 (RSK2) inhibitor, (R)-5-Methyl-1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a] indole-8-carboxylic acid [1-(3-dimethylamino-propyl)-1H-benzoimidazol-2-yl]-amide (BIX 02565), with high potency (IC(50) = 1.1 nM) targeted for the treatment of heart failure. In the present study, we report that despite nanomolar potency at the target, BIX 02565 elicits off-target binding at multiple adrenergic receptor subtypes that are important in the control of vascular tone and cardiac function.

View Article and Find Full Text PDF

We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays.

View Article and Find Full Text PDF

Syntheses and structure-activity relationships (SAR) of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain azaindole moieties as A-ring mimetics and display various degrees of in vitro dissociation between gene transrepression and transactivation. Collagen induced arthritis studies in mouse have demonstrated that in vitro dissociated compounds (R)-16 and (R)-37 have steroid-like anti-inflammatory properties with improved metabolic side effect profiles, such as a reduced increase in body fat and serum insulin levels, compared to steroids.

View Article and Find Full Text PDF