Publications by authors named "Roger Borges"

Controlled release of beneficial microorganisms in agriculture by encapsulation in biopolymeric matrices can improve biofertilizer efficacy, but it requires the modulation of properties to ensure more efficient and predictable release patterns. This study investigated the effect of a starch-based system to protect and release Priestia megaterium (former Bacillus megaterium) processed as films modified with potential cell-protective additives (maltodextrin, cellulose, and bentonite). The release kinetics, physicochemical and morphological film characteristics, and their protection against UV (Ultraviolet) radiation and temperature were evaluated.

View Article and Find Full Text PDF

Osteomyelitis is an inflammation of bone tissue usually caused by pyogenic bacteria. The most recurrent clinical approach consists of bone debridement followed by parenteral administration of antibiotics. However, systemic antibiotic treatment has limitations regarding absorption rate and bioavailability over time.

View Article and Find Full Text PDF

Despite being composed of recyclable materials, the main technological challenge of multilayer carton packs involves the efficient decompatibilization of the cellulosic, polymeric, and metallic phases. Here, a simple two-step mechanochemical process is described that uses only aqueous media and mechanical force to promote phase separation in order to fully recycle multi-layer carton packaging. The first step produces value-added micro- and nanocellulose, while in the second step, aluminum is extracted, forming precipitated aluminum and aluminum oxyhydroxides.

View Article and Find Full Text PDF

Resorbable polylactic acid (PLA) ultrathin fibers have been applied as scaffolds for tissue engineering applications due to their micro- and nanoporous structure that favor cell adhesion, besides inducing cell proliferation and upregulating gene expression related to tissue regeneration. Incorporation of multiwalled carbon nanotubes into PLA fibers has been reported to increase the mechanical properties of the scaffold, making them even more suitable for tissue engineering applications. Ideally, scaffolds should be degraded simultaneously with tissue growth.

View Article and Find Full Text PDF

Discriminate the severity level of COVID-19 disease is still a challenge. Here we investigate the capability of micro-infrared absorption spectroscopy (micro-FTIR) to probe COVID-19 severity level and predict hyperinflammation, correlating the assigned vibrational data to relevant biomolecules related to the immune system. Saliva of 184 patients was analysed by ELISA assay (Hepcidin) and micro-FTIR.

View Article and Find Full Text PDF

A detailed structural investigation of a promising bio-based polymer, polyglycerol citrate polyester, obtained by the bulk polycondensation of glycerol (Gly) against citric acid (Cit) under mild reaction was performed. The reaction in conditions with and without catalyst use (sulfuric acid, HSO) was investigated, showing evidence that it is possible to modify the polymer solubility according to the ratio and catalyst utilization. C and H NMR indicated that synthesis catalyzed with Cit excess leads to higher esterification degrees of citrate groups.

View Article and Find Full Text PDF

Bisphosphonates are a class of drugs that induce bone cancer cell death and favor bone regeneration, making them suitable for bone cancer treatment. However, when combined with bioactive glasses to enhance bone regeneration, a chemical bond between biphosphonates and the glass surface inactivates their mechanism of action. A new colloidal hydrogel-based drug delivery system could overcome that limitation once bisphosphonates, such as zoledronic acid (ZA), are incorporated into hydrogel micelles, avoiding their interaction with the glass surface.

View Article and Find Full Text PDF

The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments.

View Article and Find Full Text PDF

Objectives: To assess the effect of an experimental 58S bioactive glass on dentin permeability (dP) and erosive tooth wear (dentin surface loss - dSL).

Methods: 58S bioactive glass was synthetized using a sol-gel methodology, following by lyophilization and calcination, then mixed with phosphoric acid to obtain a paste (BGP). Forty-eight dentin disks (1 mm-thick) were used for dP, and 48 dentin slabs (3 mm × 3 mm) for dSL, which were assessed at three time intervals: post-EDTA (5 min in 17% EDTA solution); post-treatment (C: distilled water; BGP: experimental bioactive glass paste; NP: Nupro prophylaxis paste; CXT: Clinpro XT varnish); and post-erosive/abrasive cycling.

View Article and Find Full Text PDF

Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases.

View Article and Find Full Text PDF

The manufacture of asbestos materials has been banished worldwide due to their toxicity, but discarding the existing wastes remains a challenge. We investigated an alternative mechanochemical method to treat asbestos-cement materials by loading them with potassium and phosphorus from KHPO during the milling process to obtain a product used as liming and soil conditioner. The results showed total asbestos fibrous elimination after 7 to 8 h of milling.

View Article and Find Full Text PDF

Objectives: This study evaluated the influence of the cement composition and different polymerization protocols on the bonding chemical interaction of self-adhesive cements with synthetic hydroxyapatite.

Materials And Methods: Two commercial self-adhesive resin cements (RelyX U200 and Maxcem Elite) were selected, manipulated, mixed with hydroxyapatite dry powder (HAp), dispensed into molds, and distributed into three groups according to polymerization protocols: immediate photoactivation (IP); delayed photoactivation, 10 min self-curing and light-curing (DP); and chemical activation (CA, no light exposure). The detailed chemical information, at atomic scale, on the surface and deeper into the bulk of self-adhesive cement/hydroxyapatite mixtures was evaluated with X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Since patients suffer pain in the post-surgery of bone repair interventions, bioactive glass/hydrogel drug delivery systems containing local anesthetics, such as ropivacaine, could improve patient life quality by combining bone regeneration with anesthetics. However, poloxamer-based hydrogel properties are sensitive to ions, temperature, and water contents and could be structurally influenced by the ionic dissolution products from bioactive glasses of different compositions. Therefore, this study evaluated the interplay between bioactive glass dissolution kinetics and poloxamer 407 properties, establishing a correlation between changes in the hydrogel and drug release kinetics.

View Article and Find Full Text PDF

Traditional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are still the most effective clinical practice options. However, these treatments may display moderate to severe side effects caused by their low temporal or spatial resolution. In this sense, photonic nanomedicine therapies have been arising as an alternative to traditional cancer treatments since they display more control of temporal and spatial resolution, thereby yielding fewer side effects.

View Article and Find Full Text PDF

Holmium-containing bioactive glasses can be applied in bone cancer treatment because the holmium content can be neutron activated, having suitable properties for brachytherapy applications, while the bioactive glass matrix can regenerate the bone alterations induced by the tumor. To facilitate the application of these glasses in clinical practice, we proposed a composite based on Poloxamer 407 thermoresponsive hydrogel, with suitable properties for applications as injectable systems. Therefore, in this work, we evaluated the influence of holmium-containing glass particles on the properties of Poloxamer 407 hydrogel (20 /.

View Article and Find Full Text PDF

The fight against cancer is an old challenge for mankind. Apart from surgery and chemotherapy, which are the most common treatments, use of radiation represents a promising, less invasive strategy that can be performed both from the outside or inside the body. The latter approach, also known as brachytherapy, relies on the use of implantable beta-emitting seeds or microspheres for killing cancer cells.

View Article and Find Full Text PDF

Although the three main phases of iron oxide - hematite, maghemite, and magnetite - exhibit superparamagnetic properties at the nanoscale, only maghemite and magnetite phases have been explored in magnetic bioactive glass-ceramics aimed at applications in cancer treatment by hyperthermia. In this work, it is reported for the first time the superparamagnetic properties of hematite nanocrystals grown in a 58S bioactive glass matrix derived from sol-gel synthesis. The glass-ceramics are based on the (100-x)(58SiO-33CaO-9PO)-xFeO system (x = 10, 20 and 30 wt%).

View Article and Find Full Text PDF

Bioactive glasses containing rare earth elements have been proposed as promising candidates for applications in brachytherapy of bone cancer. However, their safety relies on a proper dissolution to avoid radioactive materials in the human body, and desirable bioactive properties to regenerate the bone defect caused by the tumor. In this work, we proposed a new series of sol-gel-derived bioactive glasses containing holmium oxide, based on the system (100-x)(58SiO-33CaO-9PO)-xHoO (x = 1.

View Article and Find Full Text PDF

This in vitro study aimed to analyze the physical and chemical characteristics of the hypersensitive human dentin-like surface after application of a bioactive glass (BG) paste (BG/Ac) irradiated or not with high-power lasers. Dentin specimens were treated with 17% Ethylenediamine tetraacetic acid (EDTA) solution to mimic a hypersensitive dentin and then submitted to neodymium: yttrium-aluminum-garnet (Nd:YAG) laser or CO laser irradiation prior and after application of BG/Ac. Characterizations were performed by using X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

This study describes the behavior of potential slow-release fertilizers (SRF), prepared by the mechanochemical activation of calcined Mg₂Al-CO₃ or Mg₂Fe-CO₃ layered double hydroxides (LDH) mixed with dipotassium hydrogen phosphate (K₂HPO₄). The effects of LDH thermal treatment on P/K release behavior were investigated. Characterizations of the inorganic composites before and after release experiments combined X-Ray diffraction (XRD), Fourier-transform infra-red spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX).

View Article and Find Full Text PDF

Chrysotile fibers pose a threat to public health due to their association relation to respiratory malignant lung disease such as cancer. For this reason, they must be stored and discarded appropriately, including after treatment, which raises costs. In the present study, insoluble chrysotile fibers were milled in solid state with highly soluble KHPO, destroying both structures, making the chrysotile nontoxic and generating a new material with potential use as sustainable slow-release fertilizer (SSRF) containing mainly K and P.

View Article and Find Full Text PDF

Treatments for dentine hypersensitivity (DH) may produce positive effects, though do not have lasting results. We investigated the reparative potential of stem cells derived from deciduous teeth (SHEDs) in response to components delivered from substances used in the treatment of the DH, associated or not to laser phototherapy (LPT), to stimulate dentine formation. SHEDs were submitted to substances delivered from a laboratorial P-rich bioactive glass [57SiO -26CaO-17P O (wt %)] or a commercially available desensitizer (Gluma® Desensitizer), associated (or not) to LPT (InGAlP diode laser, 660 nm, 0.

View Article and Find Full Text PDF