Publications by authors named "Roger Bannerman"

Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines.

View Article and Find Full Text PDF

A new water sample collection system was developed to improve representation of solids entrained in urban stormwater by integrating water-quality samples from the entire water column, rather than a single, fixed point. The depth-integrated sample arm (DISA) was better able to characterize suspended-sediment concentration and particle size distribution compared to fixed-point methods when tested in a controlled laboratory environment. Median suspended-sediment concentrations overestimated the actual concentration by 49 and 7% when sampling the water column at 3- and 4-points spaced vertically throughout the water column, respectively.

View Article and Find Full Text PDF

A new depth-integrated sample arm (DISA) was developed to improve the representation of solids in stormwater, both organic and inorganic, by collecting a water quality sample from multiple points in the water column. Data from this study demonstrate the idea of vertical stratification of solids in storm sewer runoff. Concentrations of suspended sediment in runoff were statistically greater using a fixed rather than multipoint collection system.

View Article and Find Full Text PDF

Reproductive and oxidative stress biomarkers have been recommended as tools to assess the health of aquatic organisms. Though validated in the laboratory, there are few studies that tie a change in gene expression to adverse reproductive or population outcomes in the field. This paper looked at 17 streams with varying degrees of urbanization to assess the use of biomarkers associated with reproduction or stress in predicting reproductive success of fathead minnows.

View Article and Find Full Text PDF

Sand-sized particles (>63 microm) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample.

View Article and Find Full Text PDF