Publications by authors named "Roger Altman"

Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP.

View Article and Find Full Text PDF

Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates.

View Article and Find Full Text PDF

Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs.

View Article and Find Full Text PDF

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems. Although key features are conserved across evolution, eukaryotes achieve higher-fidelity mRNA decoding than bacteria.

View Article and Find Full Text PDF

In this perspective, we highlight the recent progress in utilizing Baird aromatic species to improve fluorophore performance in microscopy and imaging applications. We specifically focus on the origins of the use of Baird aromaticity in fluorescence applications, the development of “self‐healing” fluorophores leveraging cyclooctatetraene’ Baird aromaticity, and where developments need to occur to optimize this technology.

View Article and Find Full Text PDF

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10 to 10 at each step) over thousands of cycles. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome.

View Article and Find Full Text PDF

Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum.

View Article and Find Full Text PDF

The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis.

View Article and Find Full Text PDF

While surface-based single-molecule experiments have revolutionized our understanding of biology and biomolecules, the workflow in preparing for such experiments, especially surface cleaning and functionalization, remains labor-intensive and time-consuming. Even worse, meticulously assembled flow channels can be used only once for most experiments. A reusable surface would thus dramatically increase productivity and efficiency of single-molecule experiments.

View Article and Find Full Text PDF

Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool.

View Article and Find Full Text PDF

HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations.

View Article and Find Full Text PDF

Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored.

View Article and Find Full Text PDF

Phosphorylation-type (P-type) ATPases are ubiquitous primary transporters that pump cations across cell membranes through the formation and breakdown of a phosphoenzyme intermediate. Structural investigations suggest that the transport mechanism is defined by conformational changes in the cytoplasmic domains of the protein that are allosterically coupled to transmembrane helices so as to expose ion binding sites to alternate sides of the membrane. Here, we have used single-molecule fluorescence resonance energy transfer to directly observe conformational changes associated with the functional transitions in the Listeria monocytogenes Ca-ATPase (LMCA1), an orthologue of eukaryotic Ca-ATPases.

View Article and Find Full Text PDF

The twister RNA is a recently discovered nucleolytic ribozyme that is present in both bacteria and eukarya. While its biological role remains unclear, crystal structure analyses and biochemical approaches have revealed critical features of its catalytic mechanism. Here, we set out to explore dynamic aspects of twister RNA folding along the cleavage reaction coordinate.

View Article and Find Full Text PDF

Bright, long-lasting organic fluorophores enable a broad range of imaging applications. "Self-healing" fluorophores, in which intra-molecularly linked protective agents quench photo-induced reactive species, exhibit both enhanced photostability and biological compatibility. However, the self-healing strategy has yet to achieve its predicted potential, particularly in the presence of ambient oxygen where live-cell imaging studies must often be performed.

View Article and Find Full Text PDF

Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes.

View Article and Find Full Text PDF

Mutations conferring resistance to translation inhibitors often alter the structure of rRNA. Reduced susceptibility to distinct structural antibiotic classes may, therefore, emerge when a common ribosomal binding site is perturbed, which significantly reduces the clinical utility of these agents. The translation inhibitors negamycin and tetracycline interfere with tRNA binding to the aminoacyl-tRNA site on the small 30S ribosomal subunit.

View Article and Find Full Text PDF

Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives.

View Article and Find Full Text PDF

Single-molecule fluorescence microscopy is uniquely suited for detecting transient molecular recognition events, yet achieving the time resolution and statistics needed to realize this potential has proven challenging. Here we present a single-molecule imaging and analysis platform using scientific complementary metal-oxide semiconductor (sCMOS) detectors that enables imaging of 15,000 individual molecules simultaneously at millisecond rates. This system enabled the detection of previously obscured processes relevant to the fidelity mechanism in protein synthesis.

View Article and Find Full Text PDF

Escherichia coli strain MRE600 was originally identified for its low RNase I activity and has therefore been widely adopted by the biomedical research community as a preferred source for the expression and purification of transfer RNAs and ribosomes. Despite its widespread use, surprisingly little information about its genome or genetic content exists. Here, we present the first de novo assembly and description of the MRE600 genome and epigenome.

View Article and Find Full Text PDF

Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer.

View Article and Find Full Text PDF

The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems.

View Article and Find Full Text PDF

Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions.

View Article and Find Full Text PDF

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies.

View Article and Find Full Text PDF

The increase in multi-drug-resistant bacteria is limiting the effectiveness of currently approved antibiotics, leading to a renewed interest in antibiotics with distinct chemical scaffolds. We have solved the structures of the Thermus thermophilus 70S ribosome with A-, P-, and E-site tRNAs bound and in complex with either the aminocyclitol-containing antibiotic hygromycin A (HygA) or the nucleoside antibiotic A201A. Both antibiotics bind at the peptidyl transferase center and sterically occlude the CCA-end of the A-tRNA from entering the A site of the peptidyl transferase center.

View Article and Find Full Text PDF