Publications by authors named "Roger A van Egmond"

In order to predict the fate of chemicals in the environment, a range of regulatory tests are performed with microbial inocula collected from environmental compartments to investigate the potential for biodegradation. The abundance and distribution of microbes in the environment is affected by a range of variables, hence diversity and biomass of inocula used in biodegradation tests can be highly variable in space and time. The use of artificial or natural biofilms in regulatory tests could enable more consistent microbial communities be used as inocula, in order to increase test consistency.

View Article and Find Full Text PDF

Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP).

View Article and Find Full Text PDF

Society's reliance upon chemicals over the last few decades has led to their increased production, application and release into the environment. Determination of chemical persistence is crucial for risk assessment and management of chemicals. Current established OECD biodegradation guidelines enable testing of chemicals under laboratory conditions but with an incomplete consideration of factors that can impact on chemical persistence in the environment.

View Article and Find Full Text PDF

Decamethylcyclopentasiloxane, commonly known as D5 (cyclopentasiloxane) has a wide application of use across a multitude of personal care product categories. The relative volatility of D5 is one of the key properties attributed to this substance that provide for the derived performance benefits from the use of this raw material in personal care formulations. On this basis, rapid evaporative loss following use of many products comprising D5 is expected following typical use application and corresponding wear time.

View Article and Find Full Text PDF