Philos Trans A Math Phys Eng Sci
November 2024
The pressing need to mitigate climate change and drastically reduce environmental pollution and loss of biodiversity has precipitated a so-called energy transition aimed at the decarbonization of energy and defossilization of the chemical industry. The goal is a carbon-neutral (net-zero) society driven by sustainable energy and a circular bio-based economy relying on renewable biomass as the raw material. It will involve the use of green carbon, defined as carbon derived from terrestrial or aquatic biomass or organic waste, including carbon dioxide and methane emissions.
View Article and Find Full Text PDFChemistry
September 2024
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis.
View Article and Find Full Text PDFThe designed and ordered co-immobilization of multiple enzymes for vectorial biocatalysis is challenging. Here, a combination of protein phase separation and bioorthogonal linking is used to generate a zeolitic imidazole framework (ZIF-8) containing co-immobilized enzymes. Zn ions induce the clustering of minimal protein modules, such as 6-His tag, proline-rich motif (PRM) and SRC homology 3 (SH3) domains, and allow for phase separation of the coupled aldoketoreductase (AKR) and alcohol dehydrogenase (ADH) at low concentrations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH.
View Article and Find Full Text PDFEffective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing HO as the sacrificial reductant. To this end we utilized TiO/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation.
View Article and Find Full Text PDFThe use of engineered ketoreductases (KREDS), both as whole microbial cells and isolated enzymes, in the highly enantiospecific reduction of prochiral ketones is reviewed. The homochiral alcohol products are key intermediates in, for example, pharmaceuticals synthesis. The application of sophisticated protein engineering and enzyme immobilisation techniques to increase industrial viability are discussed.
View Article and Find Full Text PDFAcylated Morita-Baylis-Hillman (MBH) adducts were synthesised and subjected to enzymatic kinetic resolution (EKR) by hydrolysis employing various lipase enzymes: from P. fluorescens, P. cepacia (PCL), C.
View Article and Find Full Text PDFThe covalent immobilisation of enzymes generally involves the use of highly reactive crosslinkers, such as glutaraldehyde, to couple enzyme molecules to each other or to carriers through, for example, the free amino groups of lysine residues, on the enzyme surface. Unfortunately, such methods suffer from a lack of precision. Random formation of covalent linkages with reactive functional groups in the enzyme leads to disruption of the three dimensional structure and accompanying activity losses.
View Article and Find Full Text PDFIn their Editorial for the Special Issue on Biocatalysis as Key to Sustainable Industrial Chemistry, Guest Editors Andrés Alcántara, Pablo Domínguez de María, Jennifer Littlechild, and Roland Wohlgemuth and their co-workers on the European Society of Applied Biocatalysis' (ESAB) Working Group on Sustainable Chemistry Martin Schürmann and Roger Sheldon discuss the Special Issue and the importance of biocatalysis in carrying out cutting-edge industrial chemistry in a sustainable way, as well as the future prospects for the field.
View Article and Find Full Text PDFInvited for this month's cover is the Working Group Sustainable Chemistry of the European Society of Applied Biocatalysis (ESAB). The image shows the significant contributions of Biocatalysis to science, industry, society, and environment as a technology of first choice for Sustainable Chemistry in the 21st century. The Perspective itself is available at 10.
View Article and Find Full Text PDFThe role and power of biocatalysis in sustainable chemistry has been continuously brought forward step by step to its present outstanding position. The problem-solving capabilities of biocatalysis have been realized by numerous substantial achievements in biology, chemistry and engineering. Advances and breakthroughs in the life sciences and interdisciplinary cooperation with chemistry have clearly accelerated the implementation of biocatalytic synthesis in modern chemistry.
View Article and Find Full Text PDFIn the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels.
View Article and Find Full Text PDFThis tutorial review focuses on recent advances in technologies for enzyme immobilisation, enabling their cost-effective use in the bio-based economy and continuous processing in general. The application of enzymes, particularly in aqueous media, is generally on a single use, throw-away basis which is neither cost-effective nor compatible with a circular economy concept. This shortcoming can be overcome by immobilising the enzyme as an insoluble recyclable solid, that is as a heterogeneous catalyst.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2020
This paper is based on a lecture presented to the Royal Society in London on 24 June 2019. Two of the grand societal and technological challenges of the twenty-first century are the 'greening' of chemicals manufacture and the ongoing transition to a sustainable, carbon neutral economy based on renewable biomass as the raw material, a so-called bio-based economy. These challenges are motivated by the need to eliminate environmental degradation and mitigate climate change.
View Article and Find Full Text PDFEnzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
View Article and Find Full Text PDFThe role of bio- and chemo-catalytic aerobic oxidations in the production of commodity chemicals in a bio-refinery is reviewed. The situation is fundamentally different to that in a petrochemicals refinery where the feedstocks are gaseous or liquid hydrocarbons that are oxidized at elevated temperatures in the vapor or liquid phase under solvent-free conditions. In contrast, the feedstocks in a biorefinery are carbohydrates that are water soluble solids and their conversion will largely involve aerobic oxidations of hydroxyl functional groups in water as the solvent under relatively mild conditions of temperature and pressure.
View Article and Find Full Text PDFThis Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies.
View Article and Find Full Text PDFIn the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation.
View Article and Find Full Text PDFHydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L , is described.
View Article and Find Full Text PDFBased on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature.
View Article and Find Full Text PDFIn this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
View Article and Find Full Text PDFIn this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof-of-concept studies, more than a decade ago, involved first-generation ILs based on dialkylimidazolium cations and non-coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second-generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts.
View Article and Find Full Text PDFJ R Soc Interface
March 2016
The grand challenge facing the chemical and allied industries in the twenty-first century is the transition to greener, more sustainable manufacturing processes that efficiently use raw materials, eliminate waste and avoid the use of toxic and hazardous materials. It requires a paradigm shift from traditional concepts of process efficiency, focusing on chemical yield, to one that assigns economic value to replacing fossil resources with renewable raw materials, eliminating waste and avoiding the use of toxic and/or hazardous substances. The need for a greening of chemicals manufacture is readily apparent from a consideration of the amounts of waste generated per kilogram of product (the E factors) in various segments of the chemical industry.
View Article and Find Full Text PDFRecent Pat Biotechnol
December 2013
Hydroxynitrile lyases (HNLs) catalyze the cleavage as well as the formation of cyanohydrins. The latter reaction is valuable for the stereoselective C-C bond formation by condensation of HCN with carbonyl compounds. The resulting cyanohydrins serve as versatile building blocks for a broad range of chemical and enzymatic follow-up reactions.
View Article and Find Full Text PDF