Highly ordered mesoporous organic-inorganic hybrid silica thin films with covalently bonded, positively chargeable -NH2 terminal groups were synthesized by evaporation induced self-assembly of tetraethoxysilane, 3-aminopropyl-triethoxysilane, and a nonionic surfactant under acid conditions and characterized using TEM, GISAXS, FTIR, SAW-based N2 sorption, and TGA.
View Article and Find Full Text PDFHighly ordered mesoporous inorganic-organic hybrid thin films with covalently bonded carboxylic acid (-COOH) terminal groups on the pore surfaces were synthesized by evaporation induced self-assembly of tetraethoxysilane, organosilanes, and a nonionic surfactant followed by acid hydrolysis and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, surface acoustic wave (SAW) based N2 sorption, and thermogravimetric analysis (TGA) techniques.
View Article and Find Full Text PDFConjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material.
View Article and Find Full Text PDF