Strategic conservation efforts for cryptic species, especially bats, are hindered by limited understanding of distribution and population trends. Integrating long-term encounter surveys with multi-season occupancy models provides a solution whereby inferences about changing occupancy probabilities and latent changes in abundance can be supported. When harnessed to a Bayesian inferential paradigm, this modeling framework offers flexibility for conservation programs that need to update prior model-based understanding about at-risk species with new data.
View Article and Find Full Text PDFAcoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species.
View Article and Find Full Text PDF