Publications by authors named "Rogart R"

Unitary conductances of native Na+ channel isoforms (gamma Na) have been determined under a variety of conditions, making comparisons of gamma Na difficult. To allow direct comparison, we measured gamma Na in cell-attached patches on NB2a neuroblastoma cells and rabbit ventricular myocytes under identical conditions [pipette solution (in mM): 280 Na+ and 2 Ca2+, pH 7.4; 10 degrees C].

View Article and Find Full Text PDF

The rat brain IIa (BrIIa) Na channel alpha-subunit and the brain beta 1 subunit were coexpressed in Xenopus oocytes, and peak whole-oocyte Na current (INa) was measured at a test potential of -10 mV. Hyperpolarization of the holding potential resulted in an increased affinity of STX and TTX rested-state block of BrIIa Na channels. The apparent half-block concentration (ED50) for STX of BrIIa current decreased with hyperpolarizing holding potentials (Vhold).

View Article and Find Full Text PDF

Sodium channels expressed in oocytes exhibited isoform differences in phasic block by saxitoxin (STX). Neuronal channels (rat IIa co-expressed with beta 1 subunit, Br2a + beta 1) had slower kinetics of phasic block for pulse trains than cardiac channels (RHI). After the membrane was repolarized from a single brief depolarizing step, a test pulse at increasing intervals showed first a decrease in current (post-repolarization block) then eventual recovery in the presence of STX.

View Article and Find Full Text PDF

Monovalent and divalent cations competitively displace tetrodotoxin and saxitoxin (STX) from their binding sites on nerve and skeletal muscle Na channels. Recent studies of cloned cardiac (toxin-resistant) and brain (toxin-sensitive) Na channels suggest important structural differences in their toxin and divalent cation binding sites. We used a partially purified preparation of sheep cardiac Na channels to compare monovalent and divalent cation competition and pH dependence of binding of [3H]STX between these toxin-resistant channels and toxin-sensitive channels in membranes prepared from rat brain.

View Article and Find Full Text PDF

The neonatal rat cardiac Na channel alpha-subunit directed currents in oocytes show characteristic cardiac relative resistance to tetrodotoxin (TTX) block. TTX-sensitive currents obtained by expression in Xenopus oocytes of the alpha-subunits of the rat brain (BrnIIa) and adult skeletal muscle (microI) Na channels show abnormally slow decay kinetics. In order to determine if currents directed by the cardiac alpha-subunit (RHI) exhibit kinetics in oocytes like native currents, we compared RHI-directed currents in oocytes to Na currents in freshly isolated neonatal rat myocytes.

View Article and Find Full Text PDF

The cardiac sodium channel alpha subunit (RHI) is less sensitive to tetrodotoxin (TTX) and saxitoxin (STX) and more sensitive to cadmium than brain and skeletal muscle (microliter) isoforms. An RHI mutant, with Tyr substituted for Cys at position 374 (as in microliter) confers three properties of TTX-sensitive channels: (i) greater sensitivity to TTX (730-fold); (ii) lower sensitivity to cadmium (28-fold); and (iii) altered additional block by toxin upon repetitive stimulation. Thus, the primary determinant of high-affinity TTX-STX binding is a critical aromatic residue at position 374, and the interaction may take place possibly through an ionized hydrogen bond.

View Article and Find Full Text PDF

We describe the expression of functional Na+ channels in Xenopus oocytes injected with cRNA transcribed from the rat heart I cDNA clone. The expressed rat heart I Na+ currents show kinetic properties and resistance to tetrodotoxin and saxitoxin which are characteristic of native cardiac Na+ currents. The primary amino acid sequence of the rat heart I alpha-subunit is therefore sufficient for expression of tetrodotoxin resistance, and the rat heart I clone is likely to account for the tetrodotoxin-resistant phenotype of cardiac and denervated skeletal muscle.

View Article and Find Full Text PDF

The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2.

View Article and Find Full Text PDF

Voltage-gated Na+ channels in mammalian heart differ from those in nerve and skeletal muscle. One major difference is that tetrodotoxin (TTX)-resistant cardiac Na+ channels are blocked by 1-10 microM TTX, whereas TTX-sensitive nerve Na+ channels are blocked by nanomolar TTX concentrations. We constructed a cDNA library from 6-day-old rat hearts, where only low-affinity [3H]saxitoxin receptors, corresponding to TTX-resistant Na+ channels, were detected.

View Article and Find Full Text PDF

Various Ca-channel blockers differ in cardiovascular action despite common effects at the Ca channel. Many investigators have reported only a single high-affinity receptor for binding of [3H]nitrendipine, a dihydropyridine Ca-channel blocker. Its equilibrium dissociation constant (Kd) does not match the concentration of nitrendipine needed for a physiological effect on the mammalian cardiac Ca channel.

View Article and Find Full Text PDF

The action potential (AP) in most nerve and muscle preparations depends upon nanomolar concentrations of the neurotoxins saxitoxin (STX) and tetrodotoxin (TTX). In some excitable tissues lacking mature innervation, a toxin-resistant AP has been described by electrophysiological results. However, multiple attempts to detect corresponding toxin-resistant Na channels with radiolabelled STX and TTX have been unsuccessful.

View Article and Find Full Text PDF

Quantitative studies of 125I-labeled reovirus binding at equilibrium to several cell types was studied, including (1) murine L cell fibroblasts; (2) murine splenic T lymphocytes; (3) YAC cells, a murine lymphoma cell line; and (4) R1.1 cells, a murine thymoma cell line. Competition and saturation studies demonstrated (1) specific, saturable, high-affinity binding of reovirus types 1 and 3 to nonidentical receptors on L cell fibroblasts; (2) high-affinity binding of type 3 reovirus to murine splenic lymphocytes and R1.

View Article and Find Full Text PDF

Na+ channels in chick brain and heart have been directly compared by measuring binding of tritium-labeled saxitoxin ([3H]STX) to the two tissues under identical conditions. Maximum saturable uptake and toxin affinity were considerably less in chick heart than in chick brain, requiring the development of an assay method to resolve specific [3H]STX uptake in heart. With this method, binding to both preparations consisted of a specific saturable component and a linear nonspecific component.

View Article and Find Full Text PDF

The binding of saxitoxin, a specific inhibitor of the sodium conductance in excitable membranes, has been measured in giant axons from the squid, Loligo pealei. Binding was studied by labeling saxitoxin with tritium, using a solvent-exchange technique, and measuring the toxin uptake by liquid scintillation counting. Total toxin binding is the sum of a saturable, hyperbolic binding component, with a dissociation constant at 2--4 degrees C of 4.

View Article and Find Full Text PDF

1. Voltage-clamp studies were carried out on single rabbit myelinated nerve fibres at 14 degrees C with the method of Dodge & Frankenhaeuser (1958). 2.

View Article and Find Full Text PDF

1. The binding of [3H]saxitoxin to innervated and denervated rat diaphragm muscle, and to normal frog muscle, has been measured. 2.

View Article and Find Full Text PDF

The density of sodium channels in mammalian myelinated fibers has been estimated from measurements of the binding of [3H]saxitoxin to rabbit sciatic nerve. Binding both to intact and to homogenized nerve consists of a linear, nonspecific, component and a saturable component that represents binding to the sodium channel. The maximum saturable binding capacity in intact nerve is 19.

View Article and Find Full Text PDF

1. A new method of labelling saxitoxin (STX) is described, based on transfer of tritium from tritiated water to the toxin. 2.

View Article and Find Full Text PDF