Publications by authors named "Rogalle P"

A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase.

View Article and Find Full Text PDF

Lysophosphatidic acid (1-acyl-sn-glycero-3-phosphate or LPA) is a phospholipid mediator displaying numerous and widespread biological activities and thought to act via G-protein-coupled receptors. Here we have studied the effects on human platelets of a number of LPA analogues, including two enantiomers of both N-palmitoyl-(L)-serine-3-phosphate ((L) and (D)NAPS for N-acyl-phosphoserine) and 2-(R)-N-palmitoyl-norleucinol-1-phosphate ((R) and (S)PNPA), cyclic analogues of 1-acyl-sn-glycero-3-phosphate (cPA) and of 1-O-hexadecyl-sn-glycero-3-phosphate (cAGP), sphingosine-1-phosphate (SPP), as well as two palmitoyl derivatives of dioxazaphosphocanes bearing either a P-H or a P-OH bond (DOXP-H and DOXP-OH, respectively). Nine of these compounds induced platelet aggregation with the following order of potency: SPP < cAGP < DOXP-OH < (L)NAPS = (D)NAPS < (R)PNPA = (S)PNPA < LPA < AGP, EC50 varying between 9.

View Article and Find Full Text PDF

An acylamino phospholipid analogue (2-(R)-N-palmitoylnorleucinol-1-phosphoglycol or (R)-PNPG) was examined for its inhibitory effects against type II phospholipase A2 (PLA2) acting on membranes from Escherichia coli. Using two enzyme sources (rat platelet membranes or recombinant human type II PLA2), (R)-PNPG inhibited phospholipid hydrolysis to a maximal value of 80-85%, half-maximal effect being attained at a substrate/inhibitor molar ratio of 80-250. In contrast, (S)-PNPG was 12-fold less potent and thus provided a control for possible non-specific effects of these polar lipids.

View Article and Find Full Text PDF

The substrate specificity of a calcium-independent, 97-kDa phospholipase B purified from guinea pig intestine was further investigated using various natural and synthetic lipids. The enzyme was equally active toward enantiomeric phosphatidylcholines under conditions allowing a strict phospholipase A activity. The lysophospholipase activity declined with the following substrates: 1-acyl-sn-glycero-3-phosphocholine greater than 1-palmitoyl-propanediol-3-phosphocholine greater than 1-palmitoyl-glycol-2-phosphocholine, suggesting some influence of the polar residue vicinal to the cleavage site.

View Article and Find Full Text PDF

Fluorescent triacylglycerols containing pyrenedecanoic (P10) and pyrenebutanoic (P4) acids were synthesized and their hydrolysis by lipases from human gastric juice and stomach homogenate was investigated. The existence in stomach homogenate of four different lipolytic enzymes hydrolyzing fluorescent triacylglycerols is suggested by the comparison of various enzymatic properties: acyl chain length specificity, heat inactivation and effect of detergents (Triton X-100 and taurocholate), serum albumin, diethyl-para-nitrophenyl phosphate (E600) and other inhibitors. (1) The acid pH4-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol and exhibited the characteristic properties of the lysosomal lipase: the maximal activating effect of detergents occurs at relatively high concentrations (the substrate/detergent optimal molar ratios were 1:5 and 1:25 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively); its activity was strongly inhibited by para-chloromercuribenzoate (2.

View Article and Find Full Text PDF

A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein.

View Article and Find Full Text PDF

1. Synthetic cholesteryl esters with various acyl chain length (C2-C18) are hydrolysed by several enzymes in hamster liver. 2.

View Article and Find Full Text PDF

Cholesteryl esters with various chain lengths of fatty acid, radioactive (C2-C18:1) and fluorescent (pyrene butanoic and decanoic acid, P4 and P10, respectively) were synthesized and their hydrolysis was investigated in lymphoid cell lines from normal subjects and from Wolman's disease patients. The comparison of their hydrolysis showed that three cholesterol esterases were present in normal lymphoid cell lines: the first, active at pH 4.0, hydrolysed preferentially cholesteryl esters of acyl chain length more than 8 carbons, and P10-cholesteryl ester.

View Article and Find Full Text PDF

Human lymphoid cell lines established from normal subjects and from a Niemann-Pick disease type C patient were investigated from a triple point of view of enzymology, metabolism and ultrastructure: Sphingomyelinase activities, isoenzyme electrofocusing profiles and properties of the major enzyme were quite similar in type C and normal lymphoid cell lines. Similarly, no significant difference was observed in non-specific phosphodiesterases hydrolysing bis(methylumbelliferyl)phosphate and bis(methylumbelliferyl)pyrophosphate. The study of the lipid composition of type C cells showed no obvious accumulation of sphingomyelin or other phospholipid, but only a higher amount of glycolipids (mainly GlcCer and GbOse3Cer), as visualized by bidimensional thin-layer chromatography.

View Article and Find Full Text PDF