Publications by authors named "Rogach A"

Electrostatic complexes of a water-soluble fluorescent conjugated polymer, poly[9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene-alt-1,4-phenylene]dibromide (PDFD), and water-soluble CdTe quantum dots (QDs) are designed to provide a cascaded FRET for DNA hybridization detection. PDFD has two functions in the detection scheme: as a light-harvesting antenna, it enhances the emission of QDs by the first level FRET and inverts the sign of the surface charge of QDs, thus providing a positively charged surface to allow negatively charged dye-labeled DNA to interact with the resulting complex. This interaction causes the second level FRET to infrared-emitting dye labeled on the probe DNA, providing a reliable signal-on sensing platform discriminating between complementary and non-complementary DNA.

View Article and Find Full Text PDF

The knowledge of the biodistribution of macromolecular drug formulations is a key to their successful development for specific tissue- and tumor-targeting after systemic application. Based on the polyplex formulations, we introduce novel drug nanocarriers, which we denote as "quantoplexes" incorporating near-infrared (IR)-emitting cadmium telluride (CdTe) quantum dots (QDs), polyethylenimine (PEI), and a macromolecular model drug [plasmid DNA (pDNA)], and demonstrate the ability of tracking these bioactive compounds in living animals. Intravenous application of bare QD into nude mice leads to rapid accumulation in the liver and peripheral regions resembling lymph nodes, followed by clearance via the liver within hours to days.

View Article and Find Full Text PDF

Hybrid organic-inorganic nanomaterials have the potential of providing synergetic properties. Blends of semiconductor nanocrystals and conjugated polymers in particular promise novel optoelectronic properties. Effective design of tailored optoelectronic properties requires a deep understanding of the photophysics of these composite materials, which includes charge separation and Dexter and Förster energy transfer.

View Article and Find Full Text PDF

Cytotoxic effects of micrometer-sized polymer capsules composed out of alternating layers of polystyrenesulfonate (PSS) and polyallylamine hydrochloride (PAH) on a fibroblast cell line have been investigated with an adhesion assay. For the purpose of visualization with fluorescence nanometer-sized CdTe nanoparticles have been embedded in the walls of the capsules. Similar to free CdTe nanoparticles, toxic Cd-ions are also released from CdTe nanoparticles that have been embedded in capsules.

View Article and Find Full Text PDF

Colloidal semiconductor nanocrystals are promising luminophores for creating a new generation of electroluminescence devices. Research on semiconductor nanocrystal based light-emitting diodes (LEDs) has made remarkable advances in just one decade: the external quantum efficiency has improved by over two orders of magnitude and highly saturated color emission is now the norm. Although the device efficiencies are still more than an order of magnitude lower than those of the purely organic LEDs there are potential advantages associated with nanocrystal-based devices, such as a spectrally pure emission color, which will certainly merit future research.

View Article and Find Full Text PDF

We report single-mode and multimode lasing from isolated spherical liquid microcavities containing CdSe/ZnS nanocrystal quantum dots. Lasing is observed at densities more than 2 orders of magnitude lower than previously demonstrated or theoretically predicted, assuming a uniform nanocrystal quantum dot distribution. Charged droplets, between 10 and 40 microm in size, are electrodynamically levitated and optically pumped.

View Article and Find Full Text PDF

We report on charge separation between type II aligned CdTe and CdSe nanocrystals. Two types of electrostatically bound nanocrystal structures have been studied: first, clusters of nanocrystals hold together by Ca(II) ions in aqueous solution and, second, thin film structures of nanocrystals created with layer-by-layer deposition in combination with polyelectrolytes. In both types of structures, short interparticle distances of less than 1 nm have been achieved, whereby the isolating organic ligands on the nanocrystal surfaces and/or the polymer monolayers act as tunneling barriers between nanocrystals.

View Article and Find Full Text PDF

We use high content cell analysis, live cell fluorescent imaging, and transmission electron microscopy approaches combined with inhibitors of cellular transport and nuclear import to conduct a systematic study of the mechanism of interaction of nonfunctionalized quantum dots (QDs) with live human blood monocyte-derived primary macrophages and cell lines of phagocytic, epithelial, and endothelial nature. Live human macrophages are shown to be able to rapidly uptake and accumulate QDs in distinct cellular compartment specifically to QDs size and charge. We show that the smallest QDs specifically target histones in cell nuclei and nucleoli by a multistep process involving endocytosis, active cytoplasmic transport, and entering the nucleus via nuclear pore complexes.

View Article and Find Full Text PDF

Selective adsorption of semiconductor nanocrystals onto an organic self-organized pattern shows a time-dependent behavior. By studying the wetting behavior of delivered solvent (1-phenyloctane) on a lipid self-organized pattern and determining the adhesion energy between semiconductor nanocrystals and substrate, we obtain a correlation between dynamics and selectivity in adsorption of semiconductor nanocrystals onto the pattern by constructing a potential energy landscape. Two consecutive steps for selective adsorption of nanocrystals onto the self-organized pattern have been established: the first one is the molecule exchange of 1-phenyloctane and lipid molecules to form the adsorption sites for nanocrystals, and the second one is the adsorption of nanocrystals onto the adsorption sites due to the strong interaction between nanocrystals and substrate.

View Article and Find Full Text PDF

The first application of nanocrystal (NC)-encoded microbeads to clinical proteomics is demonstrated by multiplexed detection of circulating autoantibodies, markers of systemic sclerosis. Two-color complexes, consisting of NC-encoded, antigen-covered beads, anti-antigen antibody or clinical serum samples, and dye-tagged detecting antibodies, were observed using flow cytometry assays and on the surface of single beads. The results of flow cytometry assays correlated with the ELISA technique and provided clear discrimination between the sera samples of healthy donors and patients with autoimmune disease.

View Article and Find Full Text PDF

We describe recent developments with multifunctional nanoengineered polymer capsules. In addition to their obvious use as a delivery system, multifunctional nanocontainers find wide application in enzymatic catalysis, controlled release, and directed drug delivery in medicine. The multifunctionality is provided by the following components: 1) Luminescent semiconductor nanocrystals (quantum dots) that facilitate imaging and identification of different capsules, 2) superparamagnetic nanoparticles that allow manipulation of the capsules in a magnetic field, 3) surface coatings, which target the capsules to desired cells, 4) metallic nanoparticles in the capsule wall that act as an absorbing antenna for electromagnetic fields and provide heat for controlled release, and 5) enzymes and pharmaceutical agents that allow specific reactions.

View Article and Find Full Text PDF

The excited state of colloidal nanoheterostructures consisting of a spherical CdSe nanocrystal with an epitaxially attached CdS rod can be perturbed effectively by electric fields. Field-induced fluorescence quenching coincides with a conversion of the excited state species from the bright exciton to a metastable trapped state (dark exciton) characterized by a power-law luminescence decay. The conversion is reversible so that up to 10% of quenched excitons recombine radiatively post turn-off of a 1 micro s field pulse, increasing the delayed luminescence by a factor of 80.

View Article and Find Full Text PDF

Semiconductor nanocrystals produced by means of colloidal chemistry in a solvent medium are an attractive class of nanometer-sized building blocks from which to create complex materials with unique properties for a variety of applications. Their optical and electronic properties can be tailored easily, both by their chemical composition and particle size. While colloidal nanocrystals emitting in the infrared region have seen a burst of attention during the last decade there is clearly a paucity of review articles covering their synthesis, assembly, spectroscopic characterization, and applications.

View Article and Find Full Text PDF

We present the concept of multifunctional nanoengineered polymer capsules and outline their applications as new drug delivery systems or supramolecular toolboxes containing, for example, enzymes capable of converting nontoxic prodrugs into toxic drugs at a designated location. Such functionalized nanocontainers offer a wide range of applications including enzymatic catalysis, controlled release, and directed drug delivery in medicine due to their multifunctionality. The unique advantage of capsules in comparison to other systems is that they can be functionalized or loaded simultaneously with the above-mentioned components, thus permitting multifunctional processes in single cells.

View Article and Find Full Text PDF

We propose a combination of atomic force microscopy (AFM) and optical microscopy for the investigation of particle uptake by cells. Positively and negatively charged polymer microcapsules were chosen as model particles, because their interaction with cells had already been investigated in detail. AFM measurements allowed the recording of adhesion forces on a single-molecule level.

View Article and Find Full Text PDF

Bringing together compounds of intrinsically different functionality, such as inorganic nanostructures and organic molecules, constitutes a particularly powerful route to creating novel functional devices with synergetic properties found in neither of the constituents. We introduce nanophotonic functional elements combining two classes of materials, semiconductor nanocrystals and dyes, whose physical nature arises as a superposition of the properties of the individual components. The strongly absorbing rod-like nanocrystals focus the incident radiation by photopumping the weakly absorbing dye via energy transfer.

View Article and Find Full Text PDF

This communication describes a procedure for fabrication of hierarchical luminescence patterns based on the template-assisted assembly of CdSe nanocrystals on a self-assembled structure with green-emitting microstripes, as well as the photoinduced fluorescence enhancement of CdSe nanocrystals and photobleaching of dyes. The technique is low-cost and high-throughput and can be extended to many material combinations.

View Article and Find Full Text PDF

We study the interplay between Auger effects and ionization processes in the limit of strong electronic confinement in core/shell CdSe/ZnS semiconductor nanocrystal quantum dots. Spectrally resolved fluorescence decay measurements reveal a monotonic increase of the photoluminescence decay rate on excitation density. Our results suggest that Auger recombination accelerates ionization processes that lead to the occupation of dark, nonemissive nanocrystal states.

View Article and Find Full Text PDF

Semiconductor nanocrystals (SCNCs) made of CdSe, CdTe, and InP are used to photosensitize needlelike C(60) crystals. The photocurrent is increased by up to 3 orders of magnitude as compared with C(60) crystals without SCNCs. The photocurrent spectrum can be tuned precisely by the SCNC size and material, rendering the SCNC-functionalized C(60) crystals an excellent material for spectrally tuneable photodetectors.

View Article and Find Full Text PDF

We explore two routes to wave function engineering in elongated colloidal CdSe/CdS quantum dots, providing deep insight into the intrinsic physics of these low-dimensional heterostructures. Varying the aspect ratio of the nanoparticle allows control over the electron-hole overlap (radiative rate), and external electric fields manipulate the interaction between the delocalized electron and the localized hole. In agreement with theory, this leads to an exceptional size dependent quantum confined Stark effect with field induced intensity modulations, opening applications as electrically switchable single photon sources.

View Article and Find Full Text PDF

Laser mediated remote release of encapsulated fluorescently labeled polymers from nanoengineered polyelectrolyte multilayer capsules containing gold sulfide core/gold shell nanoparticles in their walls is observed in real time on a single capsule level. We have developed a method for measuring the temperature increase and have quantitatively investigated the influence of absorption, size, and surface density of metal nanoparticles using an analytical model. Experimental measurements and numerical simulations agree with the model.

View Article and Find Full Text PDF

By using a flow channel system for modeling the bloodstream in the circulatory system and by locally creating a magnetic field gradient caused by a permanent magnet, we demonstrate specific trapping of polymer capsules simultaneously functionalized with two types of nanoparticles--magnetic and luminescent nanocrystals. In the regions where the capsules were trapped by the magnetic field, drastically increased uptake of capsules by cells has been observed. The uptake of capsules by cells could be conveniently monitored with a fluorescence microscope by the luminescence of CdTe nanocrystals that had been embedded into the shells of the capsules.

View Article and Find Full Text PDF