Publications by authors named "Rogach A"

Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.

View Article and Find Full Text PDF

The desorption of conventional ligands from the surface of halide perovskite nanocrystals (NCs) often causes their structural instability and deterioration of the optoelectronic properties. To address this challenge, we present an approach of using a bidentate Lewis base ligand, namely, 1,4-bis(diphenylphosphino)butane (DBPP), for the synthesis of CsPbBr NCs. The phosphine group of DBPP has a strong interaction with the PbBr precursor, forming a highly crystalline intermediate complex during the reaction.

View Article and Find Full Text PDF

Metal halide perovskites, known for their pure and tunable light emission, near-unity photoluminescence quantum yields, favorable charge transport properties, and excellent solution processability, have emerged as promising materials for large-area, high-performance light-emitting diodes (LEDs). Over the past decade, significant advancements have been made in enhancing the efficiency, response speed, and operational stability of perovskite LEDs. These promising developments pave the way for a broad spectrum of applications extending beyond traditional solid-state lighting and displays to include visible light communication (VLC) and lasing applications.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on improving light emission from perovskite nanocrystal films, which are important for light-emitting devices, by using a TiO grating to enhance light extraction.
  • The research found that this method resulted in a 10-fold increase in emission intensity and a reduction in photoluminescence lifetime, indicating a more efficient light output.
  • Results from various imaging techniques revealed how the grating interacts with the nanocrystals, paving the way for developing higher-performing perovskite optoelectronic devices.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on metal-organic frameworks (MOFs) for water splitting, addressing challenges in identifying active sites and stability during the transition to metal oxyhydroxide.
  • By engineering defects in two-dimensional Fe-MOFs, they increased unsaturated Fe sites, enhancing electrocatalytic activity for oxygen and hydrogen evolution reactions (OER and HER).
  • The optimized Fe-MOF exhibited outstanding performance, achieving 259 mV for OER and 36 mV for HER, providing insights into the impact of phase transformation on MOF materials' electrocatalytic properties.
View Article and Find Full Text PDF
Article Synopsis
  • - The surface chemistry of colloidal semiconductor nanocrystals (NCs) greatly affects their properties and performance, focusing on the impact of shapes like nanodots, nanorods, and nanoplatelets (NPLs) on ligand density using oleylamine (OLA) as a ligand.
  • - Researchers used three experimental techniques and molecular dynamics simulations to determine the ligand density (LD), finding that NPLs had the highest LD due to their flat surfaces, while nanodots and nanorods had lower LD due to more complex surface arrangements.
  • - The study's findings enhance the understanding of NCs' ligand shells, offering insights for better control over their morphology and improving their chemical functionality.
View Article and Find Full Text PDF
Article Synopsis
  • - Chiral semiconducting nanomaterials, like AgBiS nanocrystals (NCs), have great potential in various fields, but achieving a strong circular dichroism (CD) signal has been challenging due to complex surface engineering and unclear mechanisms.
  • - A new strategy involving chiral ligand exchange with cysteine was developed, leading to significant enhancements in the CD signal in the near-UV region, with peaks at 260 and 320 nm, which help explain the ligand binding effects on the signal.
  • - The research utilized density-functional theory to show how ligand interactions cause crystal distortion and efficient electron transfer, resulting in an impressive CD signal, which was further validated by creating a spin-filter device with over 86
View Article and Find Full Text PDF
Article Synopsis
  • Perovskite nanocrystals (PNCs) hold potential for compact lasers, but controlling their emission direction has been challenging, limiting their application in photonic devices.
  • The researchers developed PNC metasurface lasers that can emit four polarized beams at a specific angle (∼30°) using a soft nanoimprinting technique and by designing photonic modes at the X point of the reciprocal lattice.
  • The laser's design allows for tunable emission angles by changing the thickness of the PNCs, making it suitable for use in directional optical antennas, 3D laser displays, and visible light communication.
View Article and Find Full Text PDF

Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs).

View Article and Find Full Text PDF

Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime.

View Article and Find Full Text PDF

Quantum-confined CsPbBr perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsO monolayer shell capping the NPL surface.

View Article and Find Full Text PDF

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.

View Article and Find Full Text PDF

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl to Br) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region.

View Article and Find Full Text PDF

Understanding the photosensitization mechanisms in Yb-doped perovskite nanocrystals is crucial for developing their anticipated photonic applications. Here, we address this question by investigating near-infrared photoluminescence of Yb-doped mixed-halide CsPbClBr nanocrystals as a function of temperature and revealing its strong dependence on the stoichiometry of the host perovskite matrix. To explain the observed experimental trends, we developed a theoretical model in which energy transfer from the perovskite matrix to Yb ions occurs through intermediate trap states situated beneath the conduction band of the host.

View Article and Find Full Text PDF

Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches.

View Article and Find Full Text PDF

Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of TiCT by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.

View Article and Find Full Text PDF

The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies.

View Article and Find Full Text PDF

Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands.

View Article and Find Full Text PDF

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap.

View Article and Find Full Text PDF

Metal halide perovskites with excellent optical and electronic properties have become a trending material in the current research. However, their limited stability under ambient conditions degrades quality and threatens their potential commercialization as optoelectronic devices. Various approaches are adopted to improve the stability of perovskite nanocrystals (PeNC) while maintaining their advantageous optical properties, particularly strong luminescence.

View Article and Find Full Text PDF

Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes.

View Article and Find Full Text PDF

A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange.

View Article and Find Full Text PDF
Article Synopsis
  • * Aggregation-induced emission (AIE) is a promising new concept in luminescence, offering benefits like high brightness, safety for biological use, and stability, making it suitable for medical applications.
  • * This review summarizes the use of AIE luminogens in imaging biological structures, diagnosing diseases, and monitoring specific substances, while also addressing important issues and future research directions to encourage interdisciplinary collaboration.
View Article and Find Full Text PDF

Organic-inorganic (hybrid) metal halide perovskites (MHPs) incorporating chiral organic ligand molecules are naturally sensitive to left- and right-handed circular polarized light, potentially enabling selective circular polarized photodetection. Here, the photoresponses in chiral MHP polycrystalline thin films made of ((S)-(-)-α-methyl benzylamine)PbI and ((R)-(+)-α-methyl benzylamine)PbI, denoted as (S-MBA) PbI and (R-MBA)PbI, respectively, are investigated by employing a thin-film field-effect transistor (FET) configuration. The left-hand-sensitive films made of (S-MBA)PbI perovskite show higher photocurrent under left-handed circularly polarized (LCP) light than under right-handed circularly polarized (RCP) illumination under otherwise identical conditions.

View Article and Find Full Text PDF