Publications by authors named "Rog-Zielinska E"

Background: Efficient excitation-contraction coupling of mammalian ventricular cardiomyocytes depends on the transverse-axial tubular system (TATS), a network of surface membrane invaginations. TATS enables tight coupling of sarcolemmal and sarcoplasmic reticulum membranes, which is essential for rapid Ca-induced Ca release, and uniform contraction upon electrical stimulation. The majority of TATS in healthy ventricular cardiomyocytes is composed of transverse tubules (TT, ∼90 % of TATS in rabbit).

View Article and Find Full Text PDF

"Medical scientists" are postgraduate investigators who are engaged in biomedical research, and either hold a biomedical PhD or are qualified in medicine but do not participate in patient care. Medical scientists constitute ~40% of staff at medical faculties and >90% at nonuniversity medical research institutions in Germany. However, medical scientists in Germany face limited long-term career prospects and a lack of dedicated training and support programmes.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy.

Methods: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes.

View Article and Find Full Text PDF

Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦ), form a popular research model.

View Article and Find Full Text PDF
Article Synopsis
  • Exposure to fine particulate matter (PM) from air pollution leads to respiratory and cardiovascular issues by activating the NLRP3 inflammasome, which triggers inflammation and release of IL-1β, a key inflammatory cytokine.
  • The activation of the inflammasome is dependent on the amount and type of PM, with Residual Oil Fly Ash (ROFA) being particularly effective in inducing IL-1β release, while other PM types were less effective.
  • The study reveals that mechanisms like lysosomal rupture and mitochondrial dysfunction contribute to IL-1β release, highlighting the complex interplay of cellular damage and immune response to specific air pollutants like ROFA.
View Article and Find Full Text PDF
Article Synopsis
  • Sharing and documenting cardiovascular research data is crucial for enhancing scientific transparency and accelerating healthcare advancements, but various challenges hinder effective data management.
  • Key obstacles include insufficient time, lack of awareness and funding, absence of standardized processes, and confusion over data sharing laws.
  • To improve data findability and usability in cardiovascular research, a culture of open science and education on FAIR (Findable, Accessible, Interoperable, Reusable) principles should be promoted, requiring consistent effort across all research levels.
View Article and Find Full Text PDF

Background: Arrhythmias may originate from surgically unaffected right ventricular (RV) regions in patients with tetralogy of Fallot (TOF). We aimed to investigate action potential (AP) remodelling and arrhythmia susceptibility in RV myocardium of patients with repaired and with unrepaired TOF, identify possible correlations with clinical phenotype and myocardial fibrosis, and compare findings with data from patients with atrial septal defect (ASD), a less severe congenital heart disease.

Methods: Intracellular AP were recorded ex vivo in RV outflow tract samples from 22 TOF and three ASD patients.

View Article and Find Full Text PDF

Aims: Myocardial infarction (MI) is a major cause of death worldwide. Effective treatments are required to improve recovery of cardiac function following MI, with the aim of improving patient outcomes and preventing progression to heart failure. The perfused but hypocontractile region bordering an infarct is functionally distinct from the remote surviving myocardium and is a determinant of adverse remodelling and cardiac contractility.

View Article and Find Full Text PDF

The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms.

View Article and Find Full Text PDF

Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells.

View Article and Find Full Text PDF

Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart.

View Article and Find Full Text PDF

The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR).

View Article and Find Full Text PDF

Aims: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated.

View Article and Find Full Text PDF

Aims: Patients with tetralogy of Fallot (TOF) are often affected by right ventricular fibrosis, which has been associated with arrhythmias. This study aimed to assess fibrosis distribution in right ventricular outflow tract (RVOT) myocardium of TOF patients to evaluate the utility of single histology-section analyses, and to explore the possibility of fibrosis quantification in unlabelled tissue by second harmonic generation imaging (SHGI) as an alternative to conventional histology-based assays.

Methods And Results: We quantified fibrosis in 11 TOF RVOT samples, using a tailor-made automated image analysis method on Picrosirius red-stained sections.

View Article and Find Full Text PDF

Detailed knowledge of the ultrastructure of intracellular compartments is a prerequisite for our understanding of how cells function. In cardiac muscle cells, close apposition of transverse (t)-tubule (TT) and sarcoplasmic reticulum (SR) membranes supports stable high-gain excitation-contraction coupling. Here, the fine structure of this key intracellular element is examined in rabbit and mouse ventricular cardiomyocytes, using ultra-rapid high-pressure freezing (HPF, omitting aldehyde fixation) and electron microscopy.

View Article and Find Full Text PDF

The Achilles tendon is the largest and strongest tendon in the human body and is essential for storing elastic energy and positioning the foot for walking and running. Recent research into Achilles tendon anatomy and mechanics has revealed the importance of the Achilles subtendons, which are unique and semi-independent structures arising from each of the three muscular heads of the triceps surae. Of particular importance is the ability for the subtendons to slide, the role that this has in healthy tendons, and the alteration of this property in aging and disease.

View Article and Find Full Text PDF

Rationale: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes.

View Article and Find Full Text PDF

Background: The ability of heart valve cells to respond to their mechanical environment represents a key mechanism by which the integrity and function of valve cusps is maintained. A number of different mechanotransduction pathways have been implicated in the response of valve cells to mechanical stimulation. In this study, we explore the expression pattern of several mechanosensitive ion channels (MSC) and their potential to mediate mechanosensitive responses of human valve interstitial cells (VIC).

View Article and Find Full Text PDF

The rhythmic electrical activity of the heart's natural pacemaker, the sinoatrial node (SAN), determines cardiac beating rate (BR). SAN electrical activity is tightly controlled by multiple factors, including tissue stretch, which may contribute to adaptation of BR to changes in venous return. In most animals, including human, there is a robust increase in BR when the SAN is stretched.

View Article and Find Full Text PDF

The SERCA-LVAD trial was a phase 2a trial assessing the safety and feasibility of delivering an adeno-associated vector 1 carrying the cardiac isoform of the sarcoplasmic reticulum calcium ATPase (AAV1/SERCA2a) to adult chronic heart failure patients implanted with a left ventricular assist device. The SERCA-LVAD trial was one of a program of AAV1/SERCA2a cardiac gene therapy trials including CUPID1, CUPID 2 and AGENT trials. Enroled subjects were randomised to receive a single intracoronary infusion of 1 × 10 DNase-resistant AAV1/SERCA2a particles or a placebo solution in a double-blinded design, stratified by presence of neutralising antibodies to AAV.

View Article and Find Full Text PDF

The healthy heart adapts continuously to a complex set of dynamically changing mechanical conditions. The mechanical environment is altered by, and contributes to, multiple cardiac diseases. Mechanical stimuli are detected and transduced by cellular mechano-sensors, including stretch-activated ion channels (SAC).

View Article and Find Full Text PDF

Atrial fibrillation (AF) is regularly accompanied by cardiac fibrosis and concomitant heart failure. Due to the heterogeneous nature and complexity of fibrosis, the knowledge about the underlying mechanisms is limited, which prevents effective pharmacotherapy. A deeper understanding of cardiac fibroblasts is essential to meet this need.

View Article and Find Full Text PDF