Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others.
View Article and Find Full Text PDFMyocardial infarction is one of the major causes of mortality as well as morbidity around the world. Currently available treatment options face a number of drawbacks, hence cardiac tissue engineering, which aims to bioengineer functional cardiac tissue, for application in tissue repair, patient specific drug screening and disease modeling, is being explored as a viable alternative. To achieve this, an appropriate combination of cells, biomimetic scaffolds mimicking the structure and function of the native tissue, and signals, is necessary.
View Article and Find Full Text PDFThe use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass 45S5, BonAlive and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment.
View Article and Find Full Text PDFElectrospun organic/inorganic hybrid scaffolds have been appealing in tissue regeneration owing to the integrated physicochemical and biological performances. However, the conventional electrospun scaffolds with non-woven structures usually failed to enable deep cell infiltration due to the densely stacked layers among the fibers. Herein, through self-assembly-driven electrospinning, a polyhydroxybutyrate/poly(ε-caprolactone)/58S sol-gel bioactive glass (PHB/PCL/58S) hybrid scaffold with honeycomb-like structures was prepared by manipulating the solution composition and concentration during a one-step electrospinning process.
View Article and Find Full Text PDFNovel hemp fiber reinforced geopolymer composites were fabricated. The matrix was a new geopolymer based on a mixture of red mud and fly ash. Chopped, randomly oriented hemp fibers were used as reinforcement.
View Article and Find Full Text PDFThe use of ecological materials for building and industrial applications contributes to minimizing the environmental impact of new technologies. In this context, the cement and geopolymer sectors are considering natural fibers as sustainable reinforcement for developing composites. Natural fibers are renewable, biodegradable, and non-toxic, and they exhibit attractive mechanical properties in comparison with their synthetic fiber counterparts.
View Article and Find Full Text PDFDNA polymerase catalyzes the replication of DNA, one of the key steps in cell division. The control and understanding of this reaction owns great potential for the fundamental study of DNA-enzyme interactions. In this context, we developed a label-free microfluidic biosensor platform based on the principle of localized surface plasmon resonance (LSPR) to detect the DNA-polymerase reaction in real-time.
View Article and Find Full Text PDFHerbal medicine, the use of plants or plant extracts with known beneficial biological effects to treat and/or prevent diverse health disorders, has been known for thousands of years. After their replacement by synthetic drugs in the beginning of the 20th century, plant derived therapeutic agents have been recently attaining more attention again. Phytotherapeutics, which can be extracted from a wide range of different herbal plants, are believed to have a broad spectrum of therapeutic effects and less negative side effects than synthetic drugs.
View Article and Find Full Text PDFDevelopments in the field of materials science are contributing to providing solutions for the recycling of industrial residues to develop new materials. Such approaches generate new products and provide optimal alternatives to the final disposal of different types of industrial wastes. This research focused on identifying and characterizing slag, fly ash, and glass cullet from the Boyacá region in Colombia as raw materials for producing glass-ceramics, with the innovative aspect of the use of these three residues without the addition of nucleating agents to produce the glass-ceramics.
View Article and Find Full Text PDFAs mechanical properties of cell culture substrates matter, methods for mechanical characterization of scaffolds on a relevant length scale are required. We used multiple particle tracking microrheology to close the gap between elasticity determined from bulk measurements and elastic properties sensed by cells. Structure and elasticity of macroporous, three-dimensional cryogel scaffolds from mixtures of hyaluronic acid (HA) and collagen (Coll) were characterized.
View Article and Find Full Text PDFGelatin-coated, 3D sponge-like scaffolds based on 45S5 bioactive glass were produced using the foam replication technique. Compressive strength tests of gelatin-coated samples compared to uncoated scaffolds showed significant strengthening and toughening effects of the gelatin coating with compressive strength values in the range of cortical bone. Additionally, the crosslinked gelatin network (using either caffeic acid or N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-hxdroxysuccinimide (NHS) as crosslinking agent) was shown to be a suitable candidate for the sustained release of the bioactive molecule icariin.
View Article and Find Full Text PDFThree-dimensional hydrogels are ideal for tissue engineering applications due to their structural integrity and similarity to native soft tissues; however, they can lack mechanical stability. Our objective was to develop a bioactive and mechanically stable hydrogel for clinical application. Auricular cartilage was decellularised using a combination of hypertonic and hypotonic solutions with and without enzymes to produce acellular tissue.
View Article and Find Full Text PDFComposite 3D scaffolds combining natural polymers and bioceramics are promising candidates for bone tissue engineering (BTE). Zein, as a natural plant protein, offers several advantages, including biocompatibility, adequate strength properties, and low/no immunogenicity; however, it lacks bioactivity. Thus, composite zein: bioactive glass (BG) scaffolds are proposed as promising candidate for BTE applications, with silver-doping of bioactive glass providing an antibacterial effect against possible post-implantation infection.
View Article and Find Full Text PDFThe use of bioactive glass (BG) particles as a filler for the development of composite electrospun fibers has already been widely reported and investigated. The novelty of the present research work is represented by the use of benign solvents (like acetic acid and formic acid) for electrospinning of composite fibers containing BG particles, by using a blend of PCL and chitosan. In this work, different BG particle sizes were investigated, namely nanosized and micron-sized.
View Article and Find Full Text PDFSurface modification of superparamagnetic iron oxide nanoparticles (SPIONs) has been introduced with lauric acid and oleic acid via co-precipitation and thermal decomposition methods, respectively. This modification is required to increase the stability of SPIONs when incorporated in hydrophobic, biodegradable and biocompatible polymers such as poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this work, the solid-in-oil-in-water (S/O/W) emulsion-solvent extraction/evaporation method was utilized to fabricate magnetic polymer microspheres incorporating SPIONs in PHBV.
View Article and Find Full Text PDFElectrospun hybrid scaffolds are an effective platform to deliver drugs site specifically for the prevention and treatment of diseases in addition to promote tissue regeneration because of the flexibility to load drugs therein. In the present study, electrospun hybrid scaffolds containing antibiotics were developed to support cellular activities and eliminate potential postoperative inflammation and infection. As a model drug, levofloxacin (LFX) was successfully incorporated into pure polyhydroxybutyrate/poly(ε-caprolactone) (PHB/PCL) scaffolds and PHB/PCL/sol-gel-derived silica (SGS) scaffolds.
View Article and Find Full Text PDFHydrogels from natural polymers are widely used in tissue engineering due to their unique properties, especially when regarding the cell environment and their morphological similarity to the extracellular matrix (ECM) of native tissues. In this study, we describe the production and characterization of novel hybrid hydrogels composed of alginate blended with elastin from bovine neck ligament. The properties of elastin as a component of the native ECM were combined with the excellent chemical and mechanical stability as well as biocompatibility of alginate to produce two hybrid hydrogels geometries, namely 2D films obtained using sonication treatment and 3D microcapsules produced by pressure-driven extrusion.
View Article and Find Full Text PDFFor biomedical applications such as soft tissue engineering, plant proteins are becoming increasingly attractive. Zein, a class of prolamine proteins found in corn, offers excellent properties for application in the human body, but has inferior mechanical properties and lacks aqueous stability. In this study, electrospun scaffolds from neat zein and zein blended with prepolymer and mildly cross-linked poly(glycerol sebacate) (PGS) were fabricated.
View Article and Find Full Text PDFBioactive glass nanoparticles containing copper (Cu-BGNs) were introduced into polycaprolactone (PCL) coating systems to improve the bioactivity, antibacterial properties, and corrosion resistance of vulnerable magnesium matrices under physiological conditions. The influence of different amounts of Cu-BGNs in PCL coatings was thoroughly investigated in determining the wettability, electrochemical properties, and antibacterial effects against Staphylococcus carnosus and Escherichia coli, as well as their cyto-compatibility. Cu-BGNs were observed randomly scattered in PCL coatings.
View Article and Find Full Text PDFUnlabelled: Large bone defects resulting from fractures and disease are a medical concern, being often unable to heal spontaneously by the body's repair mechanisms. Bone tissue engineering (BTE) is a promising approach for treating bone defects through providing a template to guide osseous regeneration. 3D scaffolds with microstructure mimicking host bone are necessary in common BTE strategies.
View Article and Find Full Text PDFObjectives The purpose of this study was to determine applicability and procedural success of bioresorbable vascular scaffolds (BVS) for percutaneous coronary intervention (PCI) in an all-comer cohort. Background BVS use in bifurcations and severely calcified lesions is not recommended, and a relatively large crossing profile may cause limitations. It is has never been studied how widely BVS can be applied in all-comer cohorts.
View Article and Find Full Text PDFAims: Device sizing for LAA closure using transoesophageal echocardiography (TEE) can be challenging due to complex LAA anatomy. We investigated whether the use of 3D-printed left atrial appendage (LAA) models based on preprocedural computed tomography (CT) permits accurate device sizing.
Methods And Results: Twenty-two (22) patients (73±8 years, 55% male) with atrial fibrillation requiring anticoagulation at high bleeding risk underwent LAA closure (WATCHMAN device).
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microsphere loaded 45S5 bioactive glass (BG) based scaffolds with drug releasing capability have been developed. PHBV microspheres with a mean particle size 4 ± 2 μm loaded with daidzein were obtained by oil-in-water single emulsion solvent evaporation method and applied to the surface of BG scaffolds by dip coating technique. The morphology, in vitro bioactivity in simulated body fluid (SBF), mechanical properties and drug release kinetics of microsphere loaded scaffolds were studied.
View Article and Find Full Text PDF