Publications by authors named "Roesch C"

Plasmodium vivax is the most widespread of the different Plasmodium species able to infect humans and is responsible for most malaria cases outside Africa. An effective, strain-transcending vaccine that alleviates or suppresses erythrocyte invasion would be a game-changer in eliminating vivax malaria. Recently, the binding of P.

View Article and Find Full Text PDF
Article Synopsis
  • Artemisinin-based combination therapies (ACTs) have been the standard treatment for uncomplicated malaria in Africa for nearly 20 years, but recent studies indicate an increase in mutant parasites linked to reduced treatment effectiveness.
  • The Community Access to Rectal Artesunate for Malaria project studied 697 children with severe malaria in northern Uganda, finding that a significant mutation (C469Y) was more common after the introduction of rectal artesunate, suggesting it enhances resistance.
  • Genome analysis revealed that the C469Y mutation has an indigenous African origin and confirmed that parasites with this mutation show significantly reduced susceptibility to artemisinin, highlighting the urgent need for ongoing monitoring and adherence to treatment protocols to combat the rise of resistant strains.
View Article and Find Full Text PDF

Radical cure of malaria must include elimination of quiescent 'hypnozoite' forms in the liver; however, the only FDA-approved treatments are contraindicated in many vulnerable populations. To identify new drugs and drug targets for hypnozoites, we screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library and a collection of epigenetic inhibitors against liver stages. From both libraries, we identified inhibitors targeting epigenetics pathways as selectively active against and hypnozoites.

View Article and Find Full Text PDF

Background: In early 2016, in Preah Vihear, Northern Cambodia, artesunate/mefloquine was used to cope with dihydroartemisinin/piperaquine-resistant Plasmodium falciparum parasites. Following this policy, P. falciparum strains harbouring molecular markers associated with artemisinin, piperaquine and mefloquine resistance have emerged.

View Article and Find Full Text PDF

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection.

View Article and Find Full Text PDF

Background: Dihydroartemisinin/piperaquine is increasingly used for the treatment of uncomplicated Plasmodium falciparum malaria in Africa. The efficacy of this combination in Cameroon is poorly documented, while resistance to dihydroartemisinin/piperaquine readily spreads in Southeast Asia.

Objectives: This study evaluated the clinical efficacy of dihydroartemisinin/piperaquine in Cameroon, as well as the molecular profile and phenotypic susceptibility of collected isolates to dihydroartemisinin and piperaquine.

View Article and Find Full Text PDF

Background: Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum.

Objectives: Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed.

View Article and Find Full Text PDF

Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials.

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are pro-inflammatory cytokines involved in acute and chronic inflammatory diseases. Indeed, immunotherapy blocking these 2 cytokines has been developed. Micro-immunotherapy (MI) also uses ultra-low doses (ULD) of pro-inflammatory cytokines, impregnated on lactose-sucrose pillules, to counteract their overexpression.

View Article and Find Full Text PDF

Recent dual-task studies observed worse performance in task-pair switches than in task-pair repetitions and interpreted these task-pair switch costs as evidence that the identity of the two individual tasks performed within a dual task is jointly represented in a single mental representation, termed "task-pair set." In the present study, we conducted two experiments to examine (a) whether task-pair switch costs are due to switching cues or/and task pairs and (b) at which time task-pair sets are activated during dual-task processing. In Experiment 1, we used two cues per task-pair and found typical dual-task interference, indicating that performance in the individual tasks performed within the dual task deteriorates as a function of increased temporal task overlap.

View Article and Find Full Text PDF

Plasmodium vivax infects hepatocytes to form schizonts that cause blood infection, or dormant hypnozoites that can persist for months in the liver before leading to relapsing blood infections. The molecular processes that drive P. vivax schizont and hypnozoite survival remain largely unknown, but they likely involve a rich network of host-pathogen interactions, including those occurring at the host-parasite interface, the parasitophorous vacuole membrane (PVM).

View Article and Find Full Text PDF

Background: Cambodia is the epicentre of the emergence of Plasmodium falciparum drug resistance. Much less is known regarding the drug susceptibility of the co-endemic Plasmodium vivax. Only in vitro drug assays can determine the parasite's intrinsic susceptibility, but these are challenging to implement for P.

View Article and Find Full Text PDF

The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood.

View Article and Find Full Text PDF

Antigenic variation, the capacity to produce a range of variable antigens, is a well-described strategy of Plasmodium and other parasites to evade host immunity. Here, we show that gene amplification is an additional evasion mechanism used by Plasmodium vivax to escape humoral immunity targeting PvDBP, the key ligand involved in reticulocyte invasion. PvDBP gene amplification leads to increased mRNA levels and protects P.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are produced and secreted virtually by every known Gram-negative bacterium. Despite their non-live nature, they share antigenic characteristics with the bacteria they originate from. This, together with their relative ease of purification, casts the OMVs as a very promising and flexible tool in both human and veterinary vaccinology.

View Article and Find Full Text PDF

The Plasmodium vivax Duffy-binding protein (DBP) is a prime target of the protective immune response and a promising vaccine candidate for P. vivax malaria. Naturally acquired immunity (NAI) protects against malaria in adults residing in infection-endemic regions, and the passive transfer of malarial immunity confers protection.

View Article and Find Full Text PDF

invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some -exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit reticulocyte invasion, and Ab levels correlate with protection against malaria.

View Article and Find Full Text PDF

The interaction between Plasmodium vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) has been described as critical for the invasion of human reticulocytes, although increasing reports of P. vivax infections in Duffy-negative individuals questions its unique role. To investigate the genetic diversity of the two main protein ligands for reticulocyte invasion, PvDBP and P.

View Article and Find Full Text PDF

Plasmodium vivax merozoite invasion is restricted to Duffy positive reticulocytes. Merozoite interaction with the Duffy antigen is mediated by the P. vivax Duffy binding protein (PvDBP).

View Article and Find Full Text PDF

A microfluidic microreactor for trypsin mediated transthyretin (TTR) digestion has been developed as a step towards the elaboration of a fully integrated microdevice for the detection of a rare and disabling disease, the familial transthyretin amyloidosis (ATTR) which is related to specific TTR mutations. Therefore, an enzymatic microreactor coupled to an analytical step able to monitor the mutation of TTR on specific peptide fragments would allow an accurate monitoring of the treatment efficiency of ATTR. In this study, two types of immobilized trypsin microreactors have been investigated: a new miniaturized, microfluidic fluidized bed packed with trypsin functionalized magnetic particles (MPs), and a thiol-ene (TE) monolith-based chip.

View Article and Find Full Text PDF

Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers face challenges in studying Plasmodium vivax due to the difficulty of maintaining long-term lab cultures, leading to reliance on patient samples with low parasite quantities.
  • This study presents RNA-seq data from three Cambodian malaria patients, revealing consistent gene expression patterns in the parasites despite varying stages of infection.
  • The findings suggest that over 10% of P. vivax genes encode multiple protein-coding sequences and enhance the understanding of gene untranslated regions, offering valuable insights for future research.
View Article and Find Full Text PDF

Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases.

View Article and Find Full Text PDF