Publications by authors named "Roel Neijts"

The 3D organization of our genome is an important determinant for the transcriptional output of a gene in (patho)physiological contexts. The spatial organization of linear chromosomes within nucleus is dominantly inferred using two distinct approaches, chromosome conformation capture (3C) and DNA fluorescent in situ hybridization (DNA-FISH). While 3C and its derivatives score genomic interaction frequencies based on proximity ligation events, DNA-FISH methods measure physical distances between genomic loci.

View Article and Find Full Text PDF

Hox genes are crucial players in the generation and pattering of the vertebrate trunk and posterior body during embryogenesis. Their initial expression takes place shortly after the establishment of the primitive streak, in the posterior-most part of the mouse embryo and is a determinant step for setting up the definitive Hox expression boundaries along the antero-posterior body axis. The developmental signals and epigenetic mechanisms underlying this early activation remained unsolved until recently.

View Article and Find Full Text PDF

Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in the gradual colinear activation of the Hox clusters.

View Article and Find Full Text PDF

In vertebrate embryos, anterior tissues are generated early, followed by the other axial structures that emerge sequentially from a posterior growth zone. The genetic network driving posterior axial elongation in mice, and its disturbance in mutants with posterior truncation, is not yet fully understood. Here, we show that the combined expression of Cdx2 and T Brachyury is essential to establish the core signature of posterior axial progenitors.

View Article and Find Full Text PDF

Sequential 3'-to-5' activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3'-most Hox genes have been unraveled in any organism. We demonstrate that a series of enhancers, some of which are Wnt-dependent, is located within a HoxA 3' subtopologically associated domain (subTAD).

View Article and Find Full Text PDF

Background: The vertebrate body axis extends sequentially from the posterior tip of the embryo, fueled by the gastrulation process at the primitive streak and its continuation within the tailbud. Anterior structures are generated early, and subsequent nascent tissues emerge from the posterior growth zone and continue to elongate the axis until its completion. The underlying processes have been shown to be disrupted in mouse mutants, some of which were described more than half a century ago.

View Article and Find Full Text PDF

Mouse Cdx genes are involved in axial patterning and partial Cdx mutants exhibit posterior embryonic defects. We found that mouse embryos in which all three Cdx genes are inactivated fail to generate any axial tissue beyond the cephalic and occipital primordia. Anterior axial tissues are laid down and well patterned in Cdx null embryos, and a 3' Hox gene is initially transcribed and expressed in the hindbrain normally.

View Article and Find Full Text PDF

Development of meso-diencephalic dopamine (mdDA) neurons requires the combined actions of the orphan nuclear receptor Nurr1 and the paired-like homeobox transcription factor Pitx3. Whereas all mdDA neurons require Nurr1 for expression of Th and survival, dependence on Pitx3 is displayed only by the mdDA subpopulation that will form the substantia nigra (SNc). Previously, we have demonstrated that Pitx3(-/-) embryos lack the expression of the retinoic acid (RA)-generating enzyme Ahd2, which is normally selectively expressed in the Pitx3-dependent DA neurons of the SNc.

View Article and Find Full Text PDF

Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function.

View Article and Find Full Text PDF

The pituitary melanotrope cells of the amphibian Xenopus laevis are responsible for the production of the pigment-dispersing peptide α-melanophore-stimulating hormone, which allows the animal to adapt its skin color to its environment. During adaptation to a dark background the melanotrope cells undergo remarkable changes characterized by dramatic increases in cell size and secretory activity. In this study we performed microarray mRNA expression profiling to identify genes important to melanotrope activation and growth.

View Article and Find Full Text PDF