Publications by authors named "Roel Brienen"

Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity.

View Article and Find Full Text PDF

Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate.

View Article and Find Full Text PDF

Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition.

View Article and Find Full Text PDF

Understanding how the traits of lineages are related to diversification is key for elucidating the origin of variation in species richness. Here, we test whether traits are related to species richness among lineages of trees from all major biogeographical settings of the lowland wet tropics. We explore whether variation in mortality rate, breeding system and maximum diameter are related to species richness, either directly or via associations with range size, among 463 genera that contain wet tropical forest trees.

View Article and Find Full Text PDF

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF

Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.

View Article and Find Full Text PDF

We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions.

View Article and Find Full Text PDF
Article Synopsis
  • Amazonia's floodplain system is the largest and most biodiverse, but our understanding of its forest species and their unique roles is still limited, especially as changing flood patterns impact these communities.
  • About one-sixth of the tree diversity in Amazonia is specifically adapted to live in floodplain environments, indicating a significant ecological specialization within these forests.
  • The study emphasizes that the unique composition of floodplain forests is influenced by regional flooding patterns, highlighting the necessity of maintaining overall hydrological health to ensure the survival of Amazon's tree diversity and its essential ecosystem functions.
View Article and Find Full Text PDF

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands ( = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs.

View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF

Tropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation.

View Article and Find Full Text PDF

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies.

View Article and Find Full Text PDF

Unlabelled: Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δO) from six floodplain trees from the western Amazon to assess changes in past climate.

View Article and Find Full Text PDF

Russia has the largest forest area on earth. Its boreal forests officially store about 97 Pg C, which significantly affect the global carbon cycle. In recent years, forest fires have been intensifying on the planet, leading to increased carbon emissions.

View Article and Find Full Text PDF

Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product producing plant species (NTFP abundance). Using 151 1-ha plots, we related tree and arborescent palm species richness to carbon stock, timber stock and NTFP abundance across the Guiana Shield, and using 283 1-ha plots, to carbon stock across all of Amazonia.

View Article and Find Full Text PDF

Light and water availability are likely to vary over the lifespan of closed-canopy forest trees, with understory trees experiencing greater limitations to growth by light and canopy trees greater limitation due to drought. As drought and shade have opposing effects on isotope discrimination (Δ13C), paired measurement of ring width and Δ13C can potentially be used to differentiate between water and light limitations on tree growth. We tested this approach for Cedrela trees from three tropical forests in Bolivia and Mexico that differ in rainfall and canopy structure.

View Article and Find Full Text PDF

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqbi6djvck28vubhhm8n1i48t5hn9i22c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once