Publications by authors named "Roejarek Kanjanawarut"

Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e.

View Article and Find Full Text PDF

In this study, the authors report that sodium citrate can aggregate hexadecyl-trimethyl-ammonium ion(+)-coated gold nanorods (AuNRs), and nucleic acids of different charge and structure properties, i.e., single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded peptide nucleic acid (PNA), and PNA-DNA complex, can bind to the AuNRs and therefore retard the sodium citrate-induced aggregation to different extents.

View Article and Find Full Text PDF

We have developed a colorimetric assay for DNA detection based on the aggregation of unmodified metallic nanoparticles. Charge neutral peptide nucleic acids (PNA) are used as a "coagulant" of citrate anion-coated particles and as hybridization probe. In the absence of a complementary target DNA, free PNA molecules in solution induce aggressive particle aggregation because of the removal of charge repulsion as a result of PNA coating on nanoparticles.

View Article and Find Full Text PDF

We have demonstrated that mixed-base PNA oligomers are effective coagulants of citrate ion-coated gold and silver nanoparticles (AuNPs and AgNPs), and PNA-induced particle aggregation can be disrupted by hybridization of PNA with a specific DNA. Using particles' aggregation/dispersion as a measure, we have investigated how PNA and PNA-DNA complexes bind to AuNPs and AgNPs and modulate particles' stability differently relative to their DNA counterparts. We have made the following original discoveries: (1) mix-base PNA oligomers can induce immediate particle aggregation in a concentration- and chain-length-dependent manner; (2) PNA oligomers have a higher affinity to AuNPs and AgNPs than its ssDNA counterpart; (3) PNA-DNA complexes, although having a stable double helix structure similar to dsDNA, can effectively protect the particles from salt induced aggregation, and the protection effect of different nucleic acids are in the order of PNA-DNA complex > ssDNA > dsDNA; (4) all the characteristics are identical for AuNPs and AgNPs; and (5) AgNPs is more sensitive in response to destabilization effect and is proven a more sensitive platform for colorimetric assays.

View Article and Find Full Text PDF